航天推进技术研究院主办
WU Youliang,ZHANG Chengyin,PAN Hao,et al.Optimization for calculation method of gas convective heat transfer coefficient inside regeneratively-cooled chamber[J].Journal of Rocket Propulsion,2018,44(01):22-26.
再生冷却燃气对流换热系数计算方法优化研究
- Title:
- Optimization for calculation method of gas convective heat transfer coefficient inside regeneratively-cooled chamber
- 文章编号:
- 1672-9374(2018)01-0022-05
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 目前通常使用Bartz方法来计算液体火箭发动机推力室燃气强迫对流传热系数。Bartz方法没有考虑推力室燃烧区域分布和边界层厚度变化等实际情况对燃气热流的影响,不能很好的反映燃烧区域的燃气热流密度分布,其计算结果与试验存在一定的偏差。在Bartz方法的基础上,考虑燃烧区域长度、边界层厚度变化和流动加速性的影响,建立了修正的Bartz方法,再分别采用Bartz方法、修正的Bartz方法和Pavli方法,进行了推力室再生冷却传热计算。与液氧/甲烷发动机推力室试验结果对比表明,在三种方法中,修正的Bartz方法计算结果与试验结果最为接近。最后,采用修正的Bartz方法研究了推力室压力和混合比对再生冷却的影响。
- Abstract:
- The gas convective heat transfer coefficient inside the liquid rocket engine combustion chamber is usually evaluated by using the Bartz equation. As the Bartz equation does not take account the influence of combustion zone distribution in the thrust chamber, thickness variation of the boundary layer and other actual situations on fuel gas heat flux, it can not well present the gas heat flux density distribution inside combustion chamber, especially in the combustion zone near the injector. It is not fit well with the results of the experiments. In this paper, a modified Bartz equation is introduced. This modified Bartz equation take account the effects of combustion zone distribution, thickness variation of the boundary layer and flow acceleration in nozzle. The modified method of Bartz equation is determined. Pavli equation was used to evaluate the gas heat transfer coefficient. The comparison results show that the result calculated by the modified Bartz equation is fit well with the result of LOX/methane thrust chamber experiment. The modified Bartz equation was used to analyze the effect of the chamber pressure and mixture ratio on regeneratively-cooled chamber performance.
参考文献/References:
[1] 孙宏明.液氧/甲烷发动机评述[J].火箭推进,2012,32(2):23-31.
SUN Hongming. Review of liquid oxygen/methane rocket engine [J]. Journal of rocket propulsion, 2012, 32(2): 23-31.
[2] 王治军. 液体火箭发动机推力室设计[M]. 北京:国防工业出版社, 2014.
[3] 李军伟,刘宇.一种计算再生冷却推力室温度场的方法[J].航空动力学报,2004,8(4): 550-556.
[4] MATTEO F D. Modelling and simulation of liquid rocket engine ignition transients [D]. Rome: Sapienza University of Roma, 2011.
[5] PAVLICA J, CURLEY J K, MASTERS P A, SCHWARTZ R M. Design and cooling performance of a dump cooled rocket engine: TND-3532 [R]. USA: NASA, 1966.
[6] 孙鑫,杨成虎.5kN再生冷却推力室传热研究[J].火箭推进,2012,38(2):32-37.
SUN Xin, YANG Chenghu.Heat transfer investigation for 5kN regeneratively-cooled engine thrust chamber [J]. Journal of rocket propulsion, 2012, 38(2): 32-37.
[7] 汪小卫,金平,孙冰.全流量补燃循环发动机推力室再生冷却技术研究[J].航空动力学报,2008,23(5): 909-915.
[8] 刘国球.液体火箭发动机原理[M]. 北京:宇航出版社,1993.
[9] 杨世铭,陶文铨.传热学.3版. 北京:高等教育出版社,2002.
相似文献/References:
[1]张卫红,石文靓,郑孟伟.一种双钟型喷管液氧/甲烷发动机系统方案[J].火箭推进,2013,39(03):9.
ZHANG Wei-hong,SHI Wen-jing,ZHENG Meng-wei.System configuration of LOX/methane rocket engine with dual-bell nozzle[J].Journal of Rocket Propulsion,2013,39(01):9.
[2]王 珺,张卫红,石文靓,等.60 t级液氧/甲烷发动机起动过程建模与仿真[J].火箭推进,2013,39(05):16.
WANG Jun,ZHANG Wei-hong,SHI Wen-jing,et al.Modeling and simulation of start-up process of 60 t class LOX/methane liquid rocket engine[J].Journal of Rocket Propulsion,2013,39(01):16.
[3]孙宏明.液氧/甲烷发动机评述[J].火箭推进,2006,32(02):23.
Sun Hongming.Review of liquid oxygen/methane rocket engine[J].Journal of Rocket Propulsion,2006,32(01):23.
[4]张 明,孙 冰.液氧/甲烷发动机变截面冷却通道传热数值研究[J].火箭推进,2019,45(02):9.
ZHANG Ming,SUN Bing.Numerical study of heat transfer in variable cross-section
cooling channels of LOX/methane rocket engines[J].Journal of Rocket Propulsion,2019,45(01):9.
[5]刘朝晖,宋晨阳,陈 强,等.吸热型碳氢燃料再生冷却性能评估方法[J].火箭推进,2020,46(02):15.
LIU Zhaohui,SONG Chenyang,CHEN Qiang,et al.Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel[J].Journal of Rocket Propulsion,2020,46(01):15.
[6]吴有亮,丁煜朔,刘 潇,等.再生冷却推力室准二维传热数值计算[J].火箭推进,2023,49(02):66.
WU Youliang,DING Yushuo,LIU Xiao,et al.Quasi-2D heat transfer calculation method of regenerative cooling thrust chamber[J].Journal of Rocket Propulsion,2023,49(01):66.
[7]陈锐达,徐辉,陈泓宇,等.1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(04):17.
CHEN Ruida,XU Hui,CHEN Hongyu,et al.Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J].Journal of Rocket Propulsion,2023,49(01):17.
[8]卞香港,李龙飞,王化余,等.基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J].火箭推进,2023,49(04):74.
BIAN Xianggang,LI Longfei,WANG Huayu,et al.Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J].Journal of Rocket Propulsion,2023,49(01):74.
备注/Memo
收稿日期:2017-06-30; 修回日期:2017-08-09 作者简介: 吴有亮(1993—),男,硕士研究生,研究领域为液体火箭发动机系统设计