航天推进技术研究院主办
LI Yongzhou,LI Guangxi,ZHANG Kunyuan,et al.Aerodynamic modification design and analysis of waverider with controllable leading and trailing edges[J].Journal of Rocket Propulsion,2018,44(02):1-9.
前后缘同时可控的乘波体气动修型设计与分析
- Title:
- Aerodynamic modification design and analysis of waverider with controllable leading and trailing edges
- 文章编号:
- 1672-9374(2018)02-0001-09
- Keywords:
- waverider; aerodynamic modification; streamline tracing; geometric reconstruction; projection shape
- 分类号:
- V221-34
- 文献标志码:
- A
- 摘要:
- 从超声速气动原理出发,结合流线追踪和几何重构技术,提出了一种前后缘同时可控的乘波体气动修型设计方法。在前缘水平投影为超椭圆和后缘为圆弧的条件下,采用该方法完成了乘波体的气动修型设计并在设计点(Ma=6.0)和接力点(Ma=4.0)开展数值仿真研究。结果表明:在前后缘同时指定的条件下,气动修型设计的乘波体型面过渡光滑,只在出口两侧有很小的高压区,可以很好地保持基准乘波体的波系结构和乘波特性。与基准乘波体相比,气动修型的乘波体具有更高的容积率、升力和预压缩效率,俯仰力矩几乎相等,但是升阻比下降。有粘条件下,设计点时升阻比由2.91降为2.53,接力点时由2.69降为2.32。上述结果符合设计预期,设计方法可行。
- Abstract:
- Based on the supersonic aerodynamic principle combined with the streamline tracing and geometric reconstruction technique, a design method of waverider with controlled the leading and trailing edge was developed in this paper. Under the conditions that the horizontal projection of leading edge is hyper elliptical and the trailing edge is circular, the aerodynamic modification waverider was designed by using this method. Numerical simulation results at design point(Ma=6.0)and relay point(Ma=4.0)indicate that the surface of aerodynamic modification waverider is of smooth transition while the leading and tailing edge are specified simultaneously, except a very small high pressure area at both sides of the exit. Therefore, it is able to maintain the wave structure and characteristics of original waverider. Compared with the original waverider, the volume ratio, life force and pre-compression efficiency of aerodynamic modification waverider are higher. In addition, the pitching moment is almost equal but the lift-drag ratio is decreased. Under the viscous condition, the lift-drag ratio decreases from 2.91 to 2.53 at design point and decreases from 2.69 to 2.32 at relay point. The above results correspond to the design expectation, and the design method is feasible.
参考文献/References:
[1] DUNCAN LUNAN M A. Waverider,a revised chronology: AIAA 2015-3529 [R]. Reston: AIAA,2015.
[2] NONWEILER T R F. Aerodynamic problems of manned space vehicles [J]. Journal of the royal aeronautical society,1959,63: 521-530.
[3] JONES J U,MOORE K C,PIKE J,et al. A method for designing lifting configurations for high supersonic speeds using axisymmetric flow field [J]. Archive of applied mechanics,1968,37(1): 56-72.
[4] SOBIECZKY H,ZORES B,WANG Z. High speed flow design using the theory of osculating cones and axisymmetric flows [J]. Chinese journal of aeronautics,1999,12(1): 1-8.
[5] TAKASHIMA N. LEWIS MJ. A cone-wedge waverider configuration for engine-airframe integration [J]. Journal of aircraft,1995,32(5): 1142–1144
[6] RASMUSSEN M L. Waverider configurations derived from inclined circular and elliptic cones [J]. Journal of spacecraft and rockets,1980,17(5): 537-545.
[7] LOBBIA M A,SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics [J]. AIAA journal,2015,53(6): 1590-1601.
[8] LIU C Z,BAI P,CHEN B Y,et al. Rapid design and optimization of waverider from 3D flow: AIAA 2016-3288 [R]. Reston: AIAA,2016.
[9] JONES K D,SOBIECZKY H,SEEBASSA R. et al. Waverider design for generalized shock geometries [J]. Journal of spacecraft rockets,1995,32(6): 957–963.
[10] 李永洲,张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J].航空学报,2015,36(1): 289-301.
[11] RODI P.E. The osculating flowfield method of waverider geometry generation, AIAA 2005–0511 [R]. Reston: AIAA,2005.
[12] LEWIS M J,CHAUFFOUR M L.Shock-based waverider design with pressure gradient corrections and computational simulations [J]. Journal of aircraft,2005,42(5): 1350–1352.
[13] 李永洲,孙迪,张堃元. 前后缘型线同时可控的乘波体设计[J]. 航空学报,2017,38(1): 120153.
[14] MAXWELL J R.Hypersonic waverider stream surface actuation for variable design point operation: AIAA 2016-4706 [R]. Reston: AIAA,2016.
[15] DRAYNA T W,NOMPELIS I,CANDLER G V. Hypersonic inward turning inlets: design and optimization: AIAA 2006-297 [R]. Reston: AIAA,2006.
[16] ZHANG K Y. Research progress of hypersonic inlet inverse design based on curved shock compression system:AIAA 2015-3647 [R]. Reston: AIAA,2015.
相似文献/References:
[1]李永洲,李光熙,张堃元,等.前缘水平投影可控的乘波体设计方法研究[J].火箭推进,2017,43(05):20.
LI Yongzhou,LI Guangxi,ZHANG Kunyuan,et al.Design method of waverider with controlled horizontal
projection of leading edge[J].Journal of Rocket Propulsion,2017,43(02):20.
备注/Memo
收稿日期:2017-07-11
基金项目: 国家自然科学基金(11702205)
作者简介: 李永洲(1984—),男,博士,高级工程师,研究领域为高超声速组合发动机设计和内流气体动力学