航天推进技术研究院主办
XUE Jie,XU Hongwei,DU Dahua,et al.Simulation analysis of impact dynamics of L-shaped fixture based on modal method[J].Journal of Rocket Propulsion,2018,44(02):46-54.
基于模态法L形工装结构冲击动力学仿真分析
- Title:
- Simulation analysis of impact dynamics of L-shaped fixture based on modal method
- 文章编号:
- 1672-9374(2018)02-0046-09
- 分类号:
- V430-34
- 文献标志码:
- A
- 摘要:
- L形工装常用来转接被试结构以实现不同方向的冲击试验。首先通过模态试验获取L形工装固定于振动台状态下的模态频率、模态振型及模态阻尼比,然后建立、修正L形工装有限元动力学模型。在此基础上,采用模态法对L形工装进行冲击响应谱试验的仿真模拟,并根据仿真结果与试验数据的差异对模态阻尼比作进一步的调整。从调整后模型冲击环境下的加速度响应计算值与试验值的对比结果来看:修正后的L形工装动力学模型可以正确预示冲击响应谱试验的响应。最后,通过对在不同位置安装有被试结构的L形工装进行冲击仿真分析,得到结论如下:为避免过试验或欠试验,保证被试结构所承受的冲击响应谱与试验条件一致,建议把控制点移到被试结构安装处。
- Abstract:
- L-shaped fixture is used to connect the structure under test to achieve different direction impact and vibration test. The modal frequency, modal shape and modal damping ratio of L-shaped fixture fixed to a vibrostand are obtained by a modal test, and then the finite element dynamic model of L-shaped fixture is established and corrected. On this basis, the shock response spectrum(SRS)test of the L-shaped fixture is simulated by modal method, and the further adjustment of the modal damping ratio is made according to the difference between the simulation result and the experimental data. It is found, by means of the comparison between the calculated values of accelerated response and the experimental values of the SRS test in the modified model impact environment, that the modified model can predict the response of the SRS test accurately. According to the impact simulation analysis of the L-shaped fixture installed in different positions, the conclusions were achieved as follows: it is recommended to move the control point to the subjects structure installation position to avoid over-test and under-test, ensure that the impact response spectrum of the subject structure is consistent with the test condition.
参考文献/References:
[1] 田海英, 聂品, 董斌, 等. 一种航空遥感器动力学环境试验工装的设计与分析[J]. 长春理工大学学报(自然科学版),2012,35(4): 18-20.
[2] 王东升, 任万发, 刘青林, 等. 振动试验夹具共振频率设计要求研究[J]. 航天器环境工程, 2014,31(1): 37-41.
[3] 宫晓春, 李彩霞, 陈严华, 等. 应用圆盘工装谐振实现高量级随机振动[J]. 航天器环境工程, 2015,32(3): 273-277.
[4] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
[5] 徐稼轩, 郑铁生. 结构动力分析的数值方法[M]. 西安: 西安交通大学出版社, 1993.
[6] MSC Software Corporation. Dynamic analysis user's guide(MSC Nastran 2013)[M]. United States:MSC Software Corporation, 2013.
[7] 杨剑, 张璞, 陈火红. MD Nastran有限元实例教程[M]. 北京: 机械工业出版社, 2008.
[8] 李德葆, 陆秋海. 实验模态分析及其应用[M]. 北京: 科学出版社, 2001.
[9] 方同, 薛璞. 振动理论及其应用[M]. 西安: 西北工业大学出版社, 2010.
[10] LMS Test Lab. Estimation of modal parameters(Rev 12A)[G]. [S.l.]: LMS Test Lab, 2012.
[11] 何志勇, 宋少伟, 邓长华, 等. 瞬态时域数据合成冲击响应谱算法研究[J]. 火箭推进, 2013,39(5): 55-59.
HE Zhiyong, SONG Shaowei, DENG Changhua, et al. Research on transient time-domain data synthesis of shock response spectrum [J]. Journal of rocket propulsion, 2013, 39(5): 55-59.
备注/Memo
收稿日期:2017-08-24
基金项目: 国家自然科学基金青年基金(11702204),装备预研共用技术和应用基础(2017ZZB-YY4001)
作者简介: 薛 杰(1983—),男,高级工程师,研究领域为结构振动与强度