航天推进技术研究院主办
MAO Kai,WANG Xiaofeng,LI Changhuan,et al.Design and flow analysis of partial admission turbine for rocket engine[J].Journal of Rocket Propulsion,2018,44(03):30-36.
火箭发动机部分进气涡轮设计与流动分析
- Title:
- Design and flow analysis of partial admission turbine for rocket engine
- 文章编号:
- 1672-9374(2018)03-0030-07
- 分类号:
- V343.21-34
- 文献标志码:
- A
- 摘要:
- 根据某型液体火箭发动机总体性能及结构要求,采用一维方法设计了部分进气、圆锥形喷嘴、单级超声速冲击式涡轮。基于求解雷诺平均的Navier-Stokes方程组,对涡轮内部流场进行全三维粘性定常仿真计算及分析,并研究了不同转子叶栅通道面积变化方式对涡轮性能的影响。结果表明:部分进气涡轮内部流动流线不规则、存在较多漩涡流动、转子叶栅激波复杂、叶片通道内分离较为严重; 喷嘴通道和转子叶栅通道内总压损失均在20%以上,其中转子叶栅通道损失更大; 不同转子叶栅通道面积的变化方式对涡轮总体性能影响基本不大,但收缩-扩张型通道可降低流速,缓解气流分离,对降低叶片温差应力有一定帮助。
- Abstract:
- According to the overall performance and structure requirements of a liquid rocket engine, a partial admission, conical nozzle and single-stage supersonic impulse turbine were designed with one-dimensional engineering method. By solving Reynolds-averaged Navier-Stocks(RANS)equations, the three-dimensional viscous steady-state simulation and analysis are performed for the internal flow field of the turbine. For the rotor cascade channel, the influence of area varieties on turbine performance is studied. The results show that the internal streamline of the partial admission turbine is irregular, and there are more eddy flows, complicated rotor cascade shock and serious separation in the blade channel. The total pressure loss in the nozzle channel and rotor cascade channel is more than 20%, and the pressure loss in the later is greater. The variation of rotor cascade channel area has little effect on the overall performance of turbine, but the convergent-divergent type channel can reduce the flow velocity and relieve the gas flow separation, which is helpful in reducing the temperature difference stress of blade.
参考文献/References:
[1] 隋秀明.低进气度部分进气涡轮气动设计与内部流动研究[J].工程热物理学报,2013,34(3):419-422
[2] 隋秀明.导叶展弦比对部分进气涡轮性能影响的数值研究[J].工程热物理学报,2015,36(7):1442-1446.
[3] 严俊峰, 逯婉若.冲击式涡轮内部流动数值研究[J].火箭推进,2009,35(1):31-35.
Yan Junfeng, LU Wanre. Numerical analysis of inner flow field for an impulse turbine [J]. Journal of rocket propulsion, 2009, 35(1): 31-35.
[4] 伊进宝.部分进气燃气涡轮机叶轮流场数值模拟[J].鱼雷技术,2010,18(6):456-460.
[5] 李旭升.动叶围带顶部泄漏对冲击式涡轮气动性能影响的研究[J].导弹与航天运载技术,2015(1):17-21.
[6] 奥夫相尼科夫.液体火箭发动机涡轮泵装置原理与计算[M]. 任汉芬译.北京:航天工业总共公司第十一研究所,1999.
[7] 刘国球.液体火箭发动机原理[M].北京:中国宇航出版社,2009.
[8] 张远君.液体火箭发动机涡轮泵设计[M].北京:北京航空航天大学出版社.1995.
[9] 王雨琦.部分进气超临界二氧化碳向心透平气动性能研究[J].热力透平,2016,45(3):184-188.
[10] 屈焕成.汽轮机调节级三维复杂流动的数值研究[J].热科学与技术,2011,10(1):82-87.
[11] 蒋彬.微型冲动式部分进气涡轮机的流程特性及气动损失[J].热能与动力工程,2015,30(6):873-879.
[12] 郑晓宇, 林奇燕, 王磊.小型部分进气亚声速涡轮流动损失研究及优化[J].火箭推进,2017,43(1):32-37.
ZHENGXiaoyu, LI Qiyan, WANG Lei. Research and optimization for flow loss of a small partial admission subsonic turbine [J]. Journal of rocket propulsion, 2017, 43(1): 32-37.
相似文献/References:
[1]赵瑞勇,陈 晖,刘军年,等.基于流固耦合的部分进气涡轮数值模拟研究[J].火箭推进,2015,41(05):38.
ZHAO Ruiyong,CHEN Hui,LIU Junnian,et al.Numerical simulation method of partial admission
turbine based on fluid-structure coupling[J].Journal of Rocket Propulsion,2015,41(03):38.
备注/Memo
收稿日期:2017-09-06
基金项目:国家重大基础研究项目(613321)
作者简介:毛凯(1987—),硕士,研究领域为液体火箭发动机涡轮泵设计