航天推进技术研究院主办
LIANG Huaixi,Han Zhanxiu,LI Qing.Analysison saturation process of liquid hydrogen with heat leakage in closed container[J].Journal of Rocket Propulsion,2018,44(03):49-53.
密闭容器漏热液氢饱和过程分析
- Title:
- Analysison saturation process of liquid hydrogen with heat leakage in closed container
- 文章编号:
- 1672-9374(2018)03-0049-05
- Keywords:
- hydrogen-oxygen rocket engine; closed container; liquid hydrogen; saturation process analysis
- 分类号:
- V434.3-34
- 文献标志码:
- A
- 摘要:
- 结合在氢氧火箭发动机及箭体组件试验过程中遇到实际情况,提出了液氢介质在密闭容器内饱和过程状态变化的问题,该问题的分析结果可以用于试验过程的安全评估。首先利用质量和能量守恒方程,对密闭容器内氢介质的饱和状态过程建立了数学模型; 根据模型的数学解析结果对饱和过程进行了定性分析,提出了临界充满率的概念,发现了饱和状态过程可以分成完全汽化、完全液化、中间饱和平衡等不同的过程。然后结合一个典型的液氢试验的工程实例,利用数学模型对饱和过程的状态参数进行了计算,计算结果与定性分析非常吻合。最后总结了密闭容器内液氢的饱和状态过程的规律,指出液氢充满率低时液氢可以完全汽化、充满率高时液氢可以膨胀至完全充满; 同时指出,对于试验导管90%的充满率下,液氢将膨胀并充满试验腔,容易出现超压破坏风险。
- Abstract:
- The state variation of the saturation process for the liquid hydrogen in a closed container is presented according to the practical problem in the tests of a hydrogen-oxygen rocket engine and its components. The analysis results of this problem can be used for the safety assessment of the test process. In this paper, the mass and energy conservation equations are used to establish a mathematic model for the saturated condition of hydrogen medium in the closed container. The saturation process is qualitatively analyzed according to the mathematical analysis results of the model, and the conception of critical filling rate is proposed creatively. It is found that the saturation state process can be divided into different processes of complete vaporization, complete liquidation and intermediate saturation equilibrium. Combined with a typical engineering case of liquid hydrogen test, the state parameters of the saturation process are calculated by means of the mathematic model. The calculated results are in good agreement with the qualitative analysis. The rule of the saturation process of liquid hydrogen in the closed container is summarized.It is indicated that the liquid hydrogen can be completely vaporized when the filling rate of liquid hydrogen is low, and the liquid hydrogen can be fully expanded when the filling rate is high. In addition, the liquid hydrogen will expand and completely fill the test duct when the filling rate of test duct is 90%, which is easy to cause an overpressure damage risk.
参考文献/References:
[1] 王竹溪. 热力学[M]. 北京:北京大学出版社.2003.
[2] 陈国邦,包锐,黄永华. 低温工程技术数据卷[M]. 北京:化学工业出版社. 2005.
[3] 弗罗斯特W. 低温传热学[M]. 陈叔平,陈玉生译. 北京:科学出版社. 1982:228-237.
[4] 徐烈,赵兰萍,李兆慈,等.低温容器无损贮存中的最佳充满率[J].低温工程,1999(4):126-131.
[5] 荣顺,高鲁嘉,徐芳.低温容器无损贮存规律[J].北京:低温工程,1999(4):132-135.
[6] 穆鹏刚,童飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J]. 火箭推进, 2015,41(4):74-78.
MU Penggang, TONG Fei, PU Guangrong, et al. Influence of temperature on tank pressurization system [J]. Journal of rocket propulsion, 2015, 41(4): 74-78.
[7] 范瑞祥, 田玉蓉, 黄兵. 新一代运载火箭增压技术研究[J].火箭推进, 2012,38(4): 9-16.
FANRuixiang, TIAN Yurong, HUANG Bing. Study on pressurization technology of the new generation launch vehicle [J]. Journal of rocket propulsion, 2012, 38(4): 9-16.
[8] 陈春富, 李茂, 王树光.液氧贮箱增压过程研究[J].火箭推进, 2013,39(4): 80-84.
CHEN Chunfu, LI Mao, WANG Shunguang. Numerical study on pressurization process of liquid oxygen tank [J]. Journal of rocket propulsion, 2013, 39(4): 80-84.
[9] ZILLIAC G, Karabeyoglu M A. Modeling of propellant tank pressurization: AIAA2005-3549 [R].USA: AIAA,2005.
[10] LI Zhaoci, XU Lie, SUN Heng, et al. Investigation on performances of non-loss storage for cryogenic liquefied gas [J]. Cryogenics, 2004, 44(5): 357-362.
[11] FADDOUL J M, MCLNTYRE S D. The NASA cryogenic fluid management technology program plan: NASA-TM 1999-105256 [R]. USA: NASA, 1999.
[12] AHUJA Vineet, HOSANGADI Ashvin, MATTICK Stephen, et al. Computational analyses of pressurization in cryo genic tanks: AIAA-2008-4752 [R]. USA: AIAA, 2008.
相似文献/References:
[1]高翔宇,孙纪国,田 原.推力室多孔面板氢发汗冷却传热分析[J].火箭推进,2012,38(05):13.
GAO Xiang-yu,SUN Ji-guo,TIAN Yuan.Numerical analysis of H2 transpiration cooling for thrust chamber porous plate[J].Journal of Rocket Propulsion,2012,38(03):13.
[2]郑大勇,颜 勇,张卫红.氢氧火箭发动机性能敏感性分析[J].火箭推进,2011,37(04):18.
ZHENG Da-yong,YAN Yong,ZHANG Wei-hong.Analysis for performance parameter sensitivity of hydrogen/oxygen rocket engine[J].Journal of Rocket Propulsion,2011,37(03):18.
[3]程钰锋,聂万胜,丰松江.湍流、喷雾模型对氢氧火箭发动机燃烧仿真的影响[J].火箭推进,2011,37(06):20.
CHENG Yu-feng,NIE Wan-sheng,FENG Song-jiang.Effects of turbulent and spray models on combustion process simultion of LOX/GH2 rocket engine[J].Journal of Rocket Propulsion,2011,37(03):20.
[4]程钰锋,聂万胜,丰松江.氢喷射温度对氢氧火箭发动机
燃烧稳定性的影响[J].火箭推进,2009,35(01):27.
Cheng Yufeng,Nie Wansheng,Feng Songjiang.The effect of initial
LOX/GH2 liquid rocket
hydrogen temperature on
engine combustion lnstability[J].Journal of Rocket Propulsion,2009,35(03):27.
[5]王 博,蒋 平,赵 骞,等.氢氧火箭发动机组件研制阶段可靠性技术综述[J].火箭推进,2021,47(02):1.
WANG Bo,JIANG Ping,ZHAO Qian,et al.Review on reliability technology of hydrogen-oxygen rocketengine components in development[J].Journal of Rocket Propulsion,2021,47(03):1.
备注/Memo
收稿日期:2017-11-02
基金项目:国家自然科学基金(1187041725)
作者简介:梁怀喜(1982—),男,工程师。研究领域为低温设计及试验、空间环境设计及模拟、液体发动机试验、振动系统设计