航天推进技术研究院主办
HAH Shutao,LIN Jie,YU Nanjia,et al.Simulation study on gaseous oxygen/methane double injectors with coaxial shear[J].Journal of Rocket Propulsion,2018,44(03):68-75.
气氧/气甲烷同轴剪切双喷嘴仿真研究
- Title:
- Simulation study on gaseous oxygen/methane double injectors with coaxial shear
- 文章编号:
- 1672-9374(2018)03-0068-08
- Keywords:
- gaseous oxygen/gaseous methane; coaxial shear; double injectors; combustion; turbulent model
- 分类号:
- V430-34
- 文献标志码:
- A
- 摘要:
- 通过对气氧/气甲烷同轴剪切双喷嘴的仿真研究,对比不同喷嘴间距对燃烧流场的影响,并对每种工况分别采用了k-ε和k-ω SST两种湍流模型进行计算。结果显示:较大的喷嘴间距会使得喷注器面中心区域和燃烧室前端壁面附近热载较大,而小喷嘴间距能够促进轴线附近的反应区靠前; 小喷嘴间距工况下,燃烧室中后段壁面温度较高; k-ω SST模型能够更好地反应回流区形态,但其得到的壁面和喷注器面中心附近的温度,以及燃烧室轴线附近的水组份浓度与k-ε模型的结果相比有所偏低。
- Abstract:
- The effects of different injector spacing on the combustion flow field were compared through the simulation study on gaseous oxygen/-methane double injectors with coaxial shear. The k-ε and k-ω SST turbulent models were used for each calculation condition. The simulation results show that the larger injector spacing will increase the heat load of the central region in the injector plane and the front wall surface of the combustor, while the smaller injector spacing can cause the reaction zone near the axis move forward. under the working condition of small injector spacing, the wall temperature of the middle-rear combustor is higher. The k-ω SST model can better reflect the status of recirculation zone, but the temperature of combustor wall and central region in the injector plane, as well as the concentration of H2O component near the combustor axis, are all lower than those of the k-ε model.
参考文献/References:
[1] 段增斌,谭永华, 孙宏明. 液体火箭发动机现状与发展 [J].火箭推进, 2000, 26(4):1-11.
DUAN Zengbin, TAN Yonghua, SUN Hongming. Status and development of liquid rocket engine [J].Journal of rocket propulsion, 2000, 26(4): 1-11.
[2] FARHANGI S, YU T, ROJAS L, et al. Gas-gas injector technology for full flow combustion cycle application [C]// Proceedings of 35th Joint Propulsion Conference & Exhibit. [S.l.:s.n.],1999: 111-120.
[3] 蔡国飙,汪小卫,李茂,等. 液体火箭发动机气气燃烧及气气喷注器技术 [M].国防工业出版社, 2012.
[4] 王鹏武. 全流量补燃循环液氧/甲烷发动机系统分析 [J].火箭推进, 2004, 30(6): 15-8.
WANG Pengwu. Analysis of full-flow stage liquid oxygen/methane rocket engine system [J].Journal of rocket propulsion, 2004, 30(6): 15-8.
[5] 王维彬, 孙纪国. 航天动力发展的生力军——液氧甲烷火箭发动机 [J].航天制造技术, 2011, 2: 7-10.
[6] 李文龙, 李平, 邹宇, 等. 烃类推进剂航天动力技术进展与展望未来 [J].宇航学报, 2015, 36(3): 243-52.
[7] 禹天福, 李亚裕. 液氧/甲烷发动机的应用前景 [J].航天制造技术, 2007(2): 4-7+13.
[8] 孙宏明. 液氧/甲烷发动机评述 [J].火箭推进, 2006, 32(2): 23-31.
SUN Hongming. Review of liquid oxygen/methane rocket engine [J].Journal of rocket propulsion, 2006, 32(2): 23-31.
[9] MOSER M D, MERENICH J, PAL S, et al. OH-radical imaging and velocity field measurements in a gaseous hydrogen/oxygen rocket: AIAA 93-2036 [R].Monterey, CA: AIAA, 1993.
[10] DAI J, CAI G, ZHANG Y, et al. Experimental investigations of coaxial injectors in a laboratory-scale rocket combustor [J].Aerospace science and technology, 2016, 59: 41-51.
[11] CAI G B, JIAN D, YANG Z, et al. Combustion behaviors of GO2/GH2 swirl-coaxial injector using non-intrusive optical diagnostics [J].Acta astronautica, 2016, 123: 246-56.
[12] DAI J, NANJIA Y U, CAI G B. Investigation of non-premixed flame combustion characters in GO2/GH2 shear coaxial injectors using non-intrusive optical diagnostics [J].Science China physics, mechanics & astronomy, 2015, 58(12): 1-13.
[13] ARCHAMBAULT M, TALLEY D, PEROOMIAN O, et al. Current Status of Gas/Gas Injector Research at AFRL [EB/OL].[2001-10-20].https://www.researchgate.net/p.
[14] 杜正刚, 高玉闪, 李茂, 等. 同轴双剪切气_气喷嘴数值模拟 [J].航空动力学报, 2010,25(4):683-686.
[15] 高玉闪, 杜正刚, 金平, 等. 气氧/甲烷同轴剪切喷注器燃烧特性数值模拟 [J].火箭推进, 2009, 35(5):18-23.
GAO Yushan, DU Zhenggang, JIN Ping, et al. Numerical simulation on the combustion characteristics of shear coaxial GO2/GCH4 injector [J].Journal of rocket propulsion, 2009, 35(5): 18-23.
[16] 周宇, 钱炜祺, 邓有奇, 等. k-ω SST两方程湍流模型中参数影响的初步分析 [J].空气动力学学报, 2010, 28(2): 213-7.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications [J].AIAA journal, 2012, 32(8): 1598-1605.
[18] 甘文彪, 周洲, 许晓平, 等. 基于改进SST模型的分离流动数值模拟 [J].推进技术, 2013, 34(5): 595-602.
[19] 张顺平. 超声速斜坡喷注器混合增强及火焰稳定特性研究 [D].长沙:国防科学技术大学, 2008.
[20] 董刚, 黄鹰, 陈义良. 不同化学反应机理对甲烷射流湍流扩散 火焰计算结果影响的研究 [J].燃料化学学报, 2000, 28(1): 49-54.
[21] YU N, ZHAO B, LI G, et al. Experimental and simulation study of a Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber [J].Acta astronautica, 2016, 118: 11-20.
[22] 李映坤, 韩珺礼, 陈雄, 等. 基于SST湍流模型的模拟SRM内流场数值仿真 [J].固体火箭技术, 2014(5):616-621.
备注/Memo
收稿日期:2018-03-05
作者简介:韩树焘(1994—),男,硕士研究生,研究领域为液体火箭发动机