航天推进技术研究院主办
GUO Dengshuai,KANG Xiaoming,LIU Xinyu,et al.Research status and key technologies of field emission electric propulsion thruster[J].Journal of Rocket Propulsion,2018,44(04):1-9.
场发射电推力器的研究现状及其关键技术
- Title:
- Research status and key technologies of field emission electric propulsion thruster
- 文章编号:
- 1672-9374(2018)04-0001-09
- Keywords:
- FEEP thruster; emitter; plume; neutralizer; infiltration
- 分类号:
- V439+.4
- 文献标志码:
- A
- 摘要:
- 与传统的化学推进相比,电推进具有高比冲、小推力、长寿命等特点,能够大幅节省推进剂、增加有效载荷质量,从而增加航天器在轨寿命,提高航天器的整体性能与收益,特别适合用于航天器的姿态控制、轨道转移和深空探测等任务。场发射电推力器是一种具有比冲高、推力冲量分辨率高、推力噪声低、功耗及成本低、结构紧凑等优点的电推力器,是重力梯度卫星的高精度阻力补偿、微纳卫星的姿态控制和轨道转移、星座编队飞行等任务最有前景的推进技术之一。简述了场发射电推力器的工作原理、结构和特点,重点分析了国内外场发射电推力器的研究现状以及关键技术。
- Abstract:
- In comparison with the traditional chemical propulsion, the electric propulsion has the characteristics of high specific impulse, low thrust and long lifetime, etc. It can greatly save propellant and increase payload weight, thereby increasing the spacecraft life in orbit and improving the overall performance and benefit of spacecraft. It is especially suitable for attitude control, orbit transfer and deep space exploration of spacecraft. The field emission electric propulsion(FEEP)thruster is a kind of electric thruster with the advantages of high specific impulse, high thrust impulse resolution, low thrust noise, low power consumption, low cost and compact structure. It is one of the most promising thrusters for high-precision resistance compensation of gravity-gradient satellite, attitude control and orbit transfer of micro/nano satellite, satellite formation flight and so on. The principle, structure and characteristic of FEEP thruster are briefly summarized. The research status and the key technologies of FEEP thrusters at home and abroad are emphatically analyzed, which provides a reference for the development of FEEP in China.
参考文献/References:
[1] 石荣,李潇,邓科.微纳卫星发展现状及在光学成像侦察中的应用[J].航天电子对抗,2016,32(1):8-13.
[2] 张中磊,丁永杰,于达仁.面向任务的电推进航天器性能优化与控制[J].宇航学报,2016,37(8):1006-1014.
[3] 毛根旺,韩先伟,杨娟,等.电推进研究的技术状态和发展前景[J].推进技术,2000,21(5):1-5.
[4] 张郁.电推进技术的研究应用现状及其发展趋势[J].火箭推进,2005,31(2):27-36.
ZHANG Yu. Current status and trend of electric propulsion technology development and application[J]. Journal of rocket propulsion, 2005, 31(2):27-36.
[5] 杭观荣,洪鑫,康小录.国外空间推进技术现状和发展趋势[J].火箭推进,2013,39(5):7-14.
HANG Guanrong, HONG Xin, KANG Xiaolu. Current status and development trend of space propulsion technologies abroad[J]. Journal of rocket propulsion, 2013,39(5):7-14.
[6] 杭观荣,康小录.电推进在深空探测主推进中的应用及发展趋势[J].火箭推进,2012,38(4):1-8.
HANG Guanrong, KANG Xiaolu. Application and development trends of electric propulsion in deep-space primary propulsion[J]. Journa of rocket propulsion, 2012,38(4):1-8.
[7] WIELDERS A A, CALVEL B, SWINKELS B L, et al. Metrology concepts for a space interferometer mission: SMART-2 [C]// Proceedings of Astronomical Telescopes and Instrumentation Conference. [S.l.]: International Society for Optics and Photonics, 2003: 268-278.
[8] FRIDLUND C V M. Darwin-the infrared space interferometry mission [J]. ESA bulletin, 2000, 103(3): 20-25.
[9] ROUSSEL J F, TONDU T, MATEO-VELEZ J C, et al. Modeling of FEEP plume effects on MICRO-SCOPE spacecraft [J]. IEEE transactions on plasma science, 2008, 36(5): 2378-2386.
[10] TAJMAR M, SCHARLEMANN C, GENOVESE A, et al. Indium FEEP micropropulsion subsystem for LISA Pathfinder [C]// Proceedings of The 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, USA: AIAA, 2006: 9-12.
[11] 刘刚,朱雨,叶贤基,等.天琴计划对微牛级推进系统的需求分析[C].第十二届中国电推进技术学术研讨会,哈尔滨,2016.
[12] TAJMAR M, GENOVESE A, STEIGER W. Indium field emission electric propulsion microthruster experimental characterization [J]. Journal of propulsion and power, 2004, 20(2): 211-218.
[13] RÜEDENAUER F G, STEIGER W, ARENDS H, et al. A liquid metal ion source for space application [J]. Le Journal de Physique Colloques, 1988, 49(C6): 161 -166.
[14] FEHRINGER M, RUEDENAUER F, STEIGER W. Indium liquid-metal ion sources as micronewton thrusters [C]// Proceedings of AIP Conference. USA: AIP, 1998, 456: 207-213.
[15] GENOVESE A, TAJMAR M, BULDRINI M, et al. 2000-hour endurance test of indium field emission electric propulsion microthruster cluster [J]. Journal of propulsion and power, 2004, 20(2): 219-227.
[16] GENOVESE A, BULDRINI N, ANDRES K, et al. 5000h endurance test of an indium FEEP 2x2 cluster [C]// The 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Sacramento, USA: AIAA, 2006.
[17] GENOVESE A, BULDRINI N, SCHNITZER R, et al. 3000 Hour Lifetime Test of an Indium FEEP Cluster for the LISA Pathfinder Mission [C]// The 30th International Electric Propulsion Conference, Florence, Italy, 2007: 17-20.
[18] VASILJEVICH I, TAJMAR M, GRIENAUER W, et al. Development of an Indium mN-FEEP Thruster [C]// The 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Hartford, USA: AIAA, 2008: 21-23.
[19] REISSNER A. 10000 h Lifetime Testing of the mN-FEEP Thruster [C]// The 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, USA: AIAA, 2016: 25-27.
[20] REISSNER A. The IFM 350 Nano Thruster - Introducing very high Δv Capabilities for Nanosats and Cubesats [C]// The 52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City: AIAA, 2016: 111-120.
[21] NICOLINI D, CHESTA E, GONZALEZ del Amo J, et al. FEEP-5 Thrust Validation in the 10-100μN Range with a Simple Nulled-Pendulum Thrust Stand: Integration Procedures [C]// The 27th International Electric Propulsion Conference. Pasadena, USA: [s.n.], 2001: 23-30.
[22] BIAGIONI L, CECCANTI F, SAVERDI M, et al. Qualification Status of the FEEP-150 Electric Micropropulsion Subsystem [C]// The 41th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference. Tucson, USA: AIAA, 2005: 121-128.
[23] GOLLOR M, BOURGUIGNON E, GLORIEUX, et al.Electric propulsion electronics activities in Europe 2015 [C]// The 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, USA: AIAA, 2015: 34-39.
[24] LENARD R, KRAITZ S, NOGAN J, et al. Progress in MEMS-Based Field Emission Thrusters at Sandia National Laboratories[C]// The 43rd AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, USA: AIAA, 2001: 50-55.
[25] GENOVESE A, MARCUCCIO S, DAL P D, et al. FEEP thruster performance at high background pressure [C]// The 25th International Electric Propulsion Conference, Cleveland, USA: [s.n.], 1997: 77-82.
[26] 段君毅.场致发射电推力器工作性能及其发射机理研究[D].上海:上海交通大学,2011.
[27] 郭登帅,康小明,刘欣宇,等.针式铟场发射电推力器的研制及实验特性[C].第十二届中国电推进技术学术研讨会,哈尔滨,2016.
[28] 高辉,段俐,胡良,等.基于镓铯对比的场发射电推力器分析与研制[J].推进技术,2015,36(2):314-320.
[29] TAJMAR M, VASILJEVICH I, GRIENAUER W. High current liquid metal ion source using porous tungsten multiemitters [J]. Ultramicroscopy, 2010, 111(1): 1-4.
[30] GONZALEZ J, SACCOCCIA G, VON R H J. Field Emission Electric Propulsion: Experimental Investigations on Microthrust FEEP Thrusters[C]// The 23rd International Electric Propulsion Conference. Seattle, USA: [s.n.], 1993:101-106.
[31] MITTERAUER J. Indium: an Alternative Propulsion for FEEP-Thrusters[C]// The 37th AIAA/ASME/SAE/
ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, Utah, USA: AIAA, 2001: 40-48.
[32] ANDRENUCCI M, MARCUCCIO S, SPAGLI L, et al. Experimental Study of FEEP Emitter Starting Characteristics [C]// The 22nd International Electric Propulsion Conference. Viareggio, Italy: [s.n.], 1991: 8-14.
[33] TAJMAR M. Survy on FEEP Neutralizer Options [C]// The 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Indianapolis, USA: AIAA, 2002: 1221-1227.
[34] TAJMAR M, SPINDT C, FINK R. In-FEEP Thruster Ion Beam Neutralization with Thermionic and Field Emission Cathodes [C]// The 27th International Electric Propulsion Conference. Pasadena, USA: [s.n.], 2001: 116-120.
[35] PAOLUCCI F, D'AGOSTINO L, BURGONI S. Design and performance study of a micro-newton thrust stand for FEEP [C]// Proceedings of Second European Spacecraft Propulsion Conference. Pisa, Italy: [s.n.], 1997: 81-86.
[36] BOCCALETTO L,D'AGOSTINO L. Design and testing of a micro-newton thrust stand for FEEP [C]// The 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, USA: AIAA, 2000: 654-659.
[37] COURTNEY D G, DANDAVINO S, SHEA H. Comparing direct and indirect thrust measurements from passively fed and highly ionic electrospray thrusters [J]. Journal of propulsion and power, 2015, 32(2): 392-407.
[38] GENOVESE A, MARCUCCIO S, DAL P D, et al. FEEP thruster performance at high background pressure [C]// The 25th International Electric Propulsion Conference. Cleveland, USA: [s.n.], 1997: 31-37.
[39] 洪延姬,周伟静,王广宇.微推力测量方法及其关键问题分析[J].航空学报,2013,34(10):2287-2299.
[40] CHIU Y H, AUSTIN B L, DRESSLER R A, et al.Mass spectrometric analysis of colloid thruster ion emission from selected propellants [J]. Journal of propulsion and power, 2005, 21(3): 416-423.
[41] GAMERO-CASTANO M, HRUBY V. Electrospray as a source of nanoparticles for efficient colloid thrusters [J]. Journal of propulsion and power, 2001, 17(5): 977-987.
[42] TAJMAR M. Development of a lifetime prediction model for indium FEEP thrusters[C]// The 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, USA: AIAA, 2005:210-216.
备注/Memo
收稿日期:2017-08-31
基金项目: 国家自然科学基金项目(51675341); 中国科学院微小卫星重点实验室开放课题(KFKT13SYS4)
作者简介: 郭登帅(1987—),男,博士,助理研究员,研究领域为场发射电推进技术及理论