航天推进技术研究院主办
YU Nanjia,BAO Qilin,ZHANG Yang,et al.Numerical simulation of combustion for LOX/kerosene engine with pintle injector[J].Journal of Rocket Propulsion,2018,44(04):23-29.
针栓式液氧/煤油发动机燃烧数值仿真
- Title:
- Numerical simulation of combustion for LOX/kerosene engine with pintle injector
- 文章编号:
- 1672-9374(2018)04-0023-07
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 为了研究低温非自燃推进剂应用针栓式喷注器的流场分布规律,总结不同动量比对针栓式发动机燃烧流场的影响,采用数值仿真的方法研究针栓式液氧/煤油发动机的燃烧流场分布,仿真模型采用k-ε湍流模型、有限速率-涡耗散燃烧模型等。仿真结果表明:针栓式发动机在燃烧室内形成两个回流区,有利于燃烧室头部冷却; 针栓式喷注器能够在燃烧室壁面形成液膜,提高了燃烧室壁面的热防护; 随着动量比增加,燃烧高温区向燃烧室壁面靠近; 动量比为1时,针栓式喷注器具有最佳的燃烧效率。
- Abstract:
- In order to study the flow field distribution of the pintle injector with cryogenic and non-hypergolic propellant, the influence of different momentum ratios on the combustion flow field is summarized for the engine. In this paper, a numerical simulation method is used to investigate the distribution of the combustion flow field for LOX/kerosene engine with pintle injector. The simulation model adopts k-ε turbulence model, finite rate/eddy-dissipation combustion model, etc. The simulated results show that the pintle engine can form two recirculation zones in the combustion chamber, which is beneficial to the cooling of the combustion chamber head. In addition, the pintle injector can form liquid film on the wall of combustion chamber, which improves the thermal protection of combustion chamber wall. As the momentum ratio increases, the high temperature area in combustor approaches to the wall of combustion chamber, and the pintle injector achieves the highest combustion efficiency when the momentum ratio is 1.
参考文献/References:
[1] 安鹏, 姚世强, 王京丽. 针栓式喷注器的特点及设计方法 [J]. 导弹与航天运载技术, 2016(3): 50-4.
[2] 李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考 [J]. 火箭推进, 2017, 43(1): 1-7.
LI Bin, ZHANG Xiaoping, GAO Yushan.Consideration on development of reusable liquid rocket engine in China [J]. Journal of rocket propulsion, 2017, 43(1): 1-7.
[3] ELVERUM G,STAUDHAMMER P. The decent engine for the lunar module: AIAA 67-521 [R]. USA: AIAA, 1967.
[4] AUSTIN B L,HEISTER S D,ANDERSON W E. Characterization of pintle engine performance for nontoxic hypergolic bipropellants [J]. Journal of propulsion and power, 2005, 21(4): 627-635.
[5] 张雪松. 猎鹰火箭的基础:不断升级的梅林发动机 [J]. 卫星与网络, 2017(6): 40-41.
[6] MIN S, RADHAKRISHNAN K, KOO J, et al. Design procedure of a movable pintle injector for liquid rocket engines [J]. Journal of propulsion & power, 2016, 32(1): 1-12.
[7] 邢馥源. 双组元变推力火箭发动机喷注器改进设计 [J]. 推进技术, 1990,11(2):42-45+80.
[8] 雷娟萍, 兰晓辉, 章荣军. 嫦娥三号探测器7500 N变推力发动机研制 [J]. 中国科学:技术科学, 2014(6): 569-575.
[9] 杨涛, 方丁酉, 唐乾刚. 火箭发动机燃烧原理 [M]. 长沙:国防科技大学出版社, 2008.
[10] 于勇. FLUENT入门与进阶教程 [M]. 北京:北京理工大学出版社, 2008.
[11] 张育林. 变推力液体火箭发动机及其控制技术 [M]. 北京:国防工业出版社, 2001.
[12] 王振国. 液体火箭发动机燃烧过程建模与数值仿真 [M]. 北京:国防工业出版社, 2012.
[13] 张连博, 毛晓芳, 汪凤山. 针栓喷注式MMH/NTO推力室燃烧及传热数值仿真 [J]. 推进技术, 2015,36(10): 1487-1494.
[14] 李进贤, 岳春国, 侯晓. 针栓式变推力火箭发动机内流场数值仿真研究 [J]. 计算机仿真, 2009, 26(8): 49-52.
相似文献/References:
[1]杨振宁,张锋,周军.面关机针栓式喷注器发动机头部传热分析[J].火箭推进,2010,36(06):6.
YANG Zhen-ning,ZHANG Feng,ZHOU Jun.Study on heat transfer of a FSO pintle injector engine head[J].Journal of Rocket Propulsion,2010,36(04):6.
[2]莫建伟,荆卓寅,李 彤,等.短型热电偶导热误差影响因素数值仿真分析[J].火箭推进,2018,44(06):81.
MO Jianwei,JING Zhuoyin,LI Tong,et al.Numerical simulation and analysis of thermal conductivity
error for short type thermocouple[J].Journal of Rocket Propulsion,2018,44(04):81.
[3]闫 波,张会强,王 兵.小推力液体火箭发动机在轨热分析[J].火箭推进,2019,45(03):15.
YAN Bo,ZHANG Huiqiang,WANG Bing.Thermal analysis of low-thrust liquid rocket engine on orbit[J].Journal of Rocket Propulsion,2019,45(04):15.
[4]王宏亮,史 超,赵 曙,等.火星大气来流模拟装置CFD仿真与试验[J].火箭推进,2020,46(01):89.
WANG Hongliang,SHI Chao,ZHAO Shu,et al.CFD and experimental studied on the Mars atmosphere incoming flow equipment[J].Journal of Rocket Propulsion,2020,46(04):89.
[5]赵 娅,袁军娅,任 翔.微喷管中稀薄流动时热力学非平衡现象研究[J].火箭推进,2020,46(03):19.
ZHAO Ya,YUAN Junya,REN Xiang.Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle[J].Journal of Rocket Propulsion,2020,46(04):19.
[6]王 勇,巨 乐,杨伟东,等.150 N气氧/煤油发动机涡流冷却技术试验[J].火箭推进,2020,46(03):26.
WANG Yong,JU Le,YANG Weidong,et al.Experimental investigation on vortex-cooled technology of 150 N GO2/kerosene engine[J].Journal of Rocket Propulsion,2020,46(04):26.
[7]陈 文,邢理想,徐浩海,等.深度节流补燃循环发动机系统稳定性研究[J].火箭推进,2020,46(03):41.
CHEN Wen,XING Lixiang,XU Haohai,et al.Study on system stability of deep-throttling staged combustion cycled engine[J].Journal of Rocket Propulsion,2020,46(04):41.
[8]张 萌,孙 冰.液氧/甲烷发动机推力室肋强化换热技术数值研究[J].火箭推进,2021,47(02):19.
ZHANG Meng,SUN Bing.Numerical study on enhanced heat transfer technology ofLOX/CH4engine chamber with ribs[J].Journal of Rocket Propulsion,2021,47(04):19.
[9]孔维鹏,谢恒.25t级氢氧膨胀循环发动机推力室氧腔流动仿真[J].火箭推进,2022,48(01):30.
KONG Weipeng,XIE Heng.Flow simulation of oxygen dome in thrust chamber of 25-ton LOX/LH2 expansion cycle rocket engine[J].Journal of Rocket Propulsion,2022,48(04):30.
[10]党枭睿,许开富,金路,等.带凹槽结构的涡轮泵平衡活塞工作特性分析[J].火箭推进,2022,48(01):45.
DANG Xiaorui,XU Kaifu,JIN Lu,et al.Analysis on working characteristics of balanced piston with groove structure for turbopump[J].Journal of Rocket Propulsion,2022,48(04):45.
备注/Memo
收稿日期:2017-12-08
作者简介: 俞南嘉(1976—),男,副教授,研究领域为航空宇航推进理论与工程