航天推进技术研究院主办
s.Study on damping characteristic of combustion chamber with acoustic resonators under hot blowing condition[J].Journal of Rocket Propulsion,2018,44(04):60-67.
热吹风条件下带声腔燃烧室阻尼特性研究
- Title:
- Study on damping characteristic of combustion chamber with acoustic resonators under hot blowing condition
- 文章编号:
- 1672-9374(2018)04-0060-08
- 分类号:
- V430-34
- 文献标志码:
- A
- 摘要:
- 为了获得热吹风条件下某带声腔燃烧室的阻尼特性,研究了声腔、流动介质、温度及激励源位置等因素对声波传递及衰减的影响,并对比了冷态(无流动)条件下模拟燃烧室的实验和计算压力-时间曲线。结果表明:声腔的加入,使燃烧室的声学振型发生了频移,相应振型幅值减小; 冷态(无流动)条件下激发的振型更多,冷态(无流动)条件下与热吹风条件下测得的声腔加入对1L和1T振型的影响规律一致,冷态(无流动)条件下模拟燃烧室压力-时间曲线的实验结果和计算结果趋势一致。验证了数值计算模型的正确性和冷态声学模拟可作为研究燃烧室声振荡的有效手段。
- Abstract:
- In order to obtain damping properties of a combustor with acoustic resonators under hot blowing condition, influence of resonator, flowing medium, temperature and stimulation source location on sonic wave propagation and attenuation are investigated. Experimental and calculated pressure-time curves of modular combustor under static cold state condition are compared. The results show that resonators can make the acoustics vibration frequency of the combustor shift and result in lower oscillation amplitude; more vibration modes can be stimulated under the static cold condition; the influence rules of the acoustic resonator on 1L and 1T oscillation modes under static cold and hot blowing conditions are almost the same. The correctness of numerical calculation model and a fact that the sonic simulation in cold static flow can be used as effective means to investigate the sonic oscillation properties of combustor are verified.
参考文献/References:
[1] HAMED A, LASKOWSKI G.A parametric study of slot injection thrust vectoring in a 2DCD Nozzle: AIAA- 1997-3154 [R]. USA: AIAA,1997.
[2] VLADIMIR G B, VIGOR Y. Liquid propellant rocket engine injector dynamics [J]. Journal of propulsion and power,1998,14(5): 797-806.
[3] LEBEDINSKY E V. Research on acoustic mechanism of antipulse baffles effect [C]// Proceedings of Sino, Ru-ssian, Ukrainian Workshop on Space Propulsion. Russia: Kuldysh Research Center, 2002: 1-11.
[4] MURRAY I F. Modeling acoustically induced oscillations of droplets: AIAA-1997-0014 [R]. USA: AIAA, 1997.
[5] KAPPEI F, LEE J Y, JOHNSON C E, et al. Investigation of oscillatory combustion progress in actively controlled li-quid fuel combustor: AIAA-2000-3348 [R]. USA: AIAA, 2000.
[6] 胡伟,李平.双组元轨控发动机声腔技术方案及试验验证[J].火箭推进,2006,32(5):7-11.
HU Wei, LI Ping. The acoustic cavity technique options and test validation of the bipropellant orbit control rocket engine [J]. Journal of rocket propulsion, 2006, 32(5): 7-11.
[7] 聂万胜,庄逢辰.声腔应用于液体火箭发动机不稳定燃烧抑制中的特性研究[J].国防科技大学学报,1998,20(2):12-16.
[8] 聂万胜,庄逢辰,张中光. 液体火箭发动机中声腔抑制不稳定燃烧的声学分析[J].应用声学,2001,20(4):35-39.
[9] 王园,张建润,顾伟,等.不同参数下封闭矩形声腔的结构-声耦合特性分析[J].东南大学学报(自然科学版),2013,43(3):503-508.
[10] 洪鑫,程惠尔,陈杰. 液体火箭发动机燃烧室声腔建模方法研究[J].推进技术,1999,20(6):19-22.
[11] 洪鑫,程惠尔. 液体火箭发动机燃烧室波动过程数值分析[J].推进技术,1999,20(2):5-8.
[12] 严宇,王延涛,李佳明,等.有声腔燃烧室的声学特性实验[J].航空动力学报,2016,31(7):1785-1791.
[13] 张蒙正,张志涛,郁锋,等. 液体火箭发动机单喷注器燃烧室声学特性模拟实验原理及实现[J].声学技术,2007, 26(2):268-272.
[14] 朱宁昌.液体火箭发动机设计[M].北京:宇航出版社,1994.
[15] 葛明龙,郑孟伟.声腔深度和相对开口面积的确定[J].火箭推进,2004,30(4):15-21.
GE Minglong, ZHENG Mengwei. Determination of the depth and fractional open area for acoustic cavity [J]. Journal of rocket propulsion, 2004, 30(4): 15-21.
相似文献/References:
[1]胡伟,李平.双组元轨控发动机声腔技术方案及试验验证[J].火箭推进,2006,32(05):7.
Hu Wei,Li Ping.The acoustic cavity technique options and test validation of the bipropellant orbit control rocket engine[J].Journal of Rocket Propulsion,2006,32(04):7.
[2]葛明龙,郑孟伟.声腔深度和相对开口面积的确定[J].火箭推进,2004,(04):15.
Ge Minglong,Zheng Mengwei.Determination of the Depth and Fractional Open Area for Acoustic Cavity[J].Journal of Rocket Propulsion,2004,(04):15.
[3]许晓勇,刘红珍.赫姆霍兹声腔声学特性实验研究[J].火箭推进,2016,42(03):68.
XU Xiaoyong,LIU Hongzhen.Experiment study on acoustic characteristics of Helmholtz cavity[J].Journal of Rocket Propulsion,2016,42(04):68.
[4]刘占一,胡锦华,张魏静,等.多孔介质冷却通道在燃烧室中的应用[J].火箭推进,2020,46(04):54.
LIU Zhanyi,HU Jinhua,ZHANG Weijing,et al.Application on combustion chamber of porous medium cooling channel[J].Journal of Rocket Propulsion,2020,46(04):54.
[5]胡锦华,张忠利,邱成旭,等.多次启动燃烧室燃油主动冷却模拟试验[J].火箭推进,2024,50(01):127.[doi:10.3969/j.issn.1672-9374.2024.01.012]
HU Jinhua,ZHANG Zhongli,QIU Chengxu,et al.Experiment on the fuel active cooling of multi-working combustion chamber[J].Journal of Rocket Propulsion,2024,50(04):127.[doi:10.3969/j.issn.1672-9374.2024.01.012]
备注/Memo
收稿日期:2018-05-02
基金项目: 有声腔燃烧室燃烧高频不稳定性的设计规范和实验研究(613193020202)
作者简介: 尚冬琴(1986—),女,硕士,研究领域为液体火箭发动机喷雾燃烧技术