航天推进技术研究院主办
RAN Yili,ZHOU Haiqing,CHENG Cheng.Scheme and test of 3000 N liquid oxygen and liquid methane rocket engine[J].Journal of Rocket Propulsion,2018,44(06):7-13.
3000N液氧/液甲烷发动机方案与试验研究
- Title:
- Scheme and test of 3000 N liquid oxygen and liquid methane rocket engine
- 文章编号:
- 1672-9374(2018)06-0007-07
- Keywords:
- liquid rocket engine; 3 000 N; liquid oxygen; liquid methane; hot-fire test
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 液氧/液甲烷以其高性能、无毒、易于轨姿控一体化、行星表面资源原位利用等优势已成为国际化学空间推进的主流发展方向之一,对国内外低温液氧甲烷化学空间推进发展和3 000 N液氧甲烷发动机的方案设计和试验研究进行了介绍。方案主要包括总体结构方案,喷注方案、冷却方案、点火方案和燃烧稳定性分析。3 000 N发动机于2017年3月进行了点火热试车,发动机点火全部取得成功,并进行了5 s和10 s稳态试验。燃烧效率约0.95,推算推力大于2 860 N,地面比冲大于242 s,与设计指标基本相当。
- Abstract:
- Liquid oxygen and liquid methane cryogenic propulsion has become one of the most promising chemical propulsion as its advantanges of high specific impulse performance about 350 s, non-toxic, easily integrated main engine and RCE(reaction control engine)and available from local resources on some exploration destination, such as MARS.This paper introduced the developing history of cryogenic liquid oxygen and liquid methane propulsion and the details of the designing and testing methods of the 3 000 N liquid oxygen and liquid methane rocket engine.Engine designing scheme mainly focused on the structure of the injector, cooling, ignition and combustion stability.A hot-fire test of the 3 000 N rocket engine was conducted on March 2017, in this test, ignitions of this engine were totally successful, as well as 5 s and 10 s stable tests.As a result, this liquid oxygen and liquid methane rocket engine achieved thrust larger than 2 860 N, combustion efficiencies about 95% and ground specific impulse larger than 242 s, which are very close to the designed values.
参考文献/References:
[1] NASA's Exploration Systems Architecture Study Final Report: NASA-TM-2005-214062[R].USA:NASA,2005.
[2] 李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考[J].火箭推进,2017,43(1):1-7.
LI B, ZHAN X P, GAO Y S.Consideration on development of reusable liquid rocket engine in China[J].Journal of rocket propulsion,2017, 43(1):1~7.
[3] 孙宏明.液氧/甲烷发动机评述[J].火箭推进,2006,32(2):23-31.
SUN H M.Review of fluid oxygen/methane rocket engine[J].Journal of rocket propulsion,2006,32(2):23-31.
[4] 王少鹏.21世纪空间运输系统的液氧\甲烷火箭发动机[J],火箭推进,2002,28(1):50-54.
WANG S P.21st century space transportation system using liquid oxygen/methane rocket engine[J].Journal of rocket propulsion, 2002,28(1):50-54.
[5] TIMOTHY D, WADEL M F.Liquid oxygen/liquid methane propulsion and cryogenic advanced development [C]// International Aerospace Conference.[S.I.]: [s.n.],2008.
[6] HART J.Verticaltest bed flight testing: NASA–TM-2014 [R].USA: NASA, 2014.
[7] OLANSEN J B, MUNDAY S R.Projectmorpheus: lander technology development [C]//AIAA space conference and exposition.USA:AIAA,2014.
[8] 王维彬,孙纪国.航天动力发展的生力军——液氧甲烷火箭发动机[J].航天制造技术,2011(2):3-6.
[9] HERLBURT E, ANGSTADT T.870 lbf reaction control system tests using LOX/ethanol and LOX/methane at white sands test facility[C] //44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.USA:AIAA, 2008.
[10] ROBINSON P J, VEITH E M, LINNE D L,et al.Conceptual design of a 5,500-lbf LOX/LCH4 lunar ascent main engine[C] // 4th JANNAF Liquid Propulsion Subcommittee Meeting.USA:[s.n.],2008.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(06):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(06):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(06):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(06):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(06):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(06):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(06):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(06):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(06):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(06):15.
备注/Memo
收稿日期:2018-09-01; 修回日期:2018-10-29 基金项目: 上海市空间发动机工程技术研究中心资助项目(17DI2280800) 作者简介: 潘一力(1987—),男,硕士,研究领域为液体火箭发动机、推进系统设计