航天推进技术研究院主办
ZHOU Kang,LI Qinglian,CHENG Peng,et al.Study on combustion simulation of GOX/GCH4 pintle engine[J].Journal of Rocket Propulsion,2018,44(06):44-52.
气氧/气甲烷针栓发动机燃烧过程数值仿真研究
- Title:
- Study on combustion simulation of GOX/GCH4 pintle engine
- 文章编号:
- 1672-9374(2018)06-0044-09
- Keywords:
- pintle engine; combustion simulation; a band distribution of temperature; pintle orifice position; pintle orifice diameter; annular gap
- 分类号:
- V430-34
- 文献标志码:
- A
- 摘要:
- 为了研究气氧/气甲烷针栓发动机的燃烧特性,建立了气氧/气甲烷针栓发动机二维轴对称数值计算模型,湍流模型采用标准的k-ε双方程湍流模型,燃烧过程采用一步总包化学反应机理的涡耗散模型进行处理。数值仿真结果表明,针栓发动机在氧气和甲烷燃烧反应稳定时会产生较大的火焰锥角,温度场呈现带状分布,燃烧室内部流场存在两组回流区; 随着喷孔位置远离针栓头部,燃烧效率增加,但火焰锥角不变; 而环缝宽度增加,燃烧效率降低,火焰锥角增加; 相反喷孔直径增加,燃烧效率增加,火焰锥角减小; 在一定范围内燃烧效率随着火焰锥角增加而减小。
- Abstract:
- In order to study the combustion characteristics of the GOx/GCH4 pintle engine, a two-dimensional axisymmetric numerical calculation model of the engine was established.For the turbulence model, a standard k-ε model was adopted and the eddy-dissipation model with one-step mechanism was applied to simulate the combustion process.The numerical simulation results show that when the combustion reaction between oxygen and methane was stable, a large flame angle was observed, the temperature showed a banded distribution, and two sets of recirculation zones existed inside the combustion chamber.The combustion efficiency increases with the position of orifice located away from the pintle tip, but the flame angle is unchanged.As the annular gap increasing, the combustion efficiency decreases, but the flame angle increases.To the contrary, the combustion efficiency increases while the diameter of the orifice increases, the flame angle decreases.Within limits, the combustion efficiency decreased with flame angle increasing.
参考文献/References:
[1] DRESSLER G, BAUER J.TRW pintle engine heritage and performance characteristics: AIAA2000-3871[R].Reston: AIAA, 2000.
[2] 刘昌波,兰晓辉, 李福云.载人登月舱下降发动机技术研究[J].火箭推进.2011,37(2)::8-13.
LIU C B, LAN X H, LI F Y.Conceptual schemes of China lunar excursion module descent engine[J].Journal of rocket propulsion.2011,37(2):8-13.
[3] SON M, YU K, KOO J, et al.Effects of momentum ratio and weber number on spray half angles of liquid controlled pintle injector[J].Journal of thermal science.2015,24(1):37-43.
[4] SON M, YU K, RADHAKRISHNAN K, et al.Verification on spray simulation of a pintle injector for liquid rocket engine[J].Journal of thermal science.2016,25(1):90-96.
[5] FANG X X, SHEN C B.Study on atomization and combustion characteristics of LOX/methane pintle injectors[J].Acta astronautica.2017,136:369-379.
[6] CHENG P, LI Q, XU S, et al.On the prediction of spray angle of liquid-liquid pintle injectors[J].Acta astronautica.2017,138:145-151.
[7] AUSTIN B L, HEISTER S D, ANDERSON W E.Characterization of pintle engine performance for nontoxic hypergolic bipropellants[J].Journal of propulsion and power.2001,21(4):627-635.
[8] BEDARD M, FELDMAN T, RETTENMAIER A,et al.Student design/build/test of a throttleable LOX/LCH4 thrust chamber: AIAA2012-3883[R].Reston: AIAA, 2012.
[9] SAKAKI K, KAKUDO H, NAKAVA S, et al.Optical measurements of ethanol/liquid oxygen rocket engine combustor with planar pintle injector: AIAA,2015-3845[R].Reston: AIAA, 2015.
[10] SAKAKI K, KASUDO H, NAKAVA S, et al.Performance evaluation of rocket engine combustors using ethanol/liquid oxygen pintle injector: AIAA2016-5080[R].Reston: AIAA, 2016.
[11] SON M, RADHAKRISHNAN K, YOON Y, et al.Numerical study on the combustion characteristics of a fuel-centered pintle injector for methane rocket engines[J].Acta astronautica.2017,135:139-149.
[12] RADHAKRISHNAN K, SON M, YU K, et al.Numerical study on combustion characteristics of a pintle injector for liquid rocket engines[C]//KSPE Fall Conference.Kansas: KSPE, 2015:48-54.
[13] 左安军, 刘业奎, 潘亮.液氧/甲烷针栓式气液喷注器仿真与实验研究[C]//中国宇航学会液体火箭推进专业委员会暨集团公司科技委液体及特种推进技术专业组2015年学术研讨会.上海:中国宇航学会液体火箭推进专业委员会,2015.
[14] 张连博, 毛晓芳, 汪凤山, 等.针栓喷注式MMH/NTO推力室燃烧及传热数值仿真[J].推进技术, 2015,36(10):1487-1494.
[15] 李进贤, 岳春国, 侯晓, 等.针栓式变推力火箭发动机内流场数值仿真研究[J].计算机仿真, 2009,26(8):49-52.
[16] 韩泉东.空间变推力液体火箭发动机流量调节及燃烧过程仿真研究[D].长沙:国防科技大学, 2006.
[17] 郭宽良, 陈志坚, 李昌烽, 等.高等传热和流动的数值计算[M].南京:江苏大学出版社,2012.
[18] 蒲宁, 徐让书, 吴超, 等.航空发动机燃烧室流动数值计算中湍流模型的比较[J].沈阳航空航天大学学报,2008,25(5):24-27.
[19] 熊言义.导弹舱室发动机意外点火喷雾降温数值研究[D].哈尔滨:哈尔滨工程大学,2013.
[20] 袁磊.氢/氧发动机变工况燃烧特性及其燃烧稳定性研究[D].长沙:国防科技大学,2013.
[21] 蔡震宇, 王铁岩, 曹红娟.一种气氧/气甲烷火炬式电点火器方案研究[J].载人航天,2016,22(3):338-342.
[22] 高玉闪, 金平, 蔡国飙.气氧/甲烷与气氢/气氧喷注器燃烧特性对比研究[J].推进技术,2013,34(6):775-780.
备注/Memo
收稿日期::2018-07-14; 修回日期:2018-09-25 基金项目: 国家自然科学基金资助项目(11472303,11402298),新世纪优秀人才支持计划(NCET-13-0156) 作者简介: 周 康(1993—),男,硕士研究生,研究领域为航空宇航推进理论与工程