航天推进技术研究院主办
XU Xuejun,REN Wu,YUAN Zhe,et al.Compression strength analysis of the reinforced S-shaped bellows[J].Journal of Rocket Propulsion,2019,45(01):19-24.
增强S型波纹管结构耐压强度分析技术
- Title:
- Compression strength analysis of the reinforced S-shaped bellows
- 文章编号:
- 1672-9374(2019)01-0019-06
- 分类号:
- V475
- 文献标志码:
- A
- 摘要:
- 针对某型液体火箭发动机燃料摇摆装置中的增强S型波纹管,采用理论解析和数值仿真技术进行耐压强度分析研究。研究表明:增强S型波纹管耐压强度数值仿真有限元模型必须采用分层波纹管结构型式,简化成单层波纹管模型仿真计算结果误差较大; 合理选用波纹管有限元模型的网格密度,不仅可有效保证耐压强度计算结果精度,还可减少计算机仿真计算时间; 波纹管的材料、总厚度、波形等参数不变的条件下,适当增加波纹管层数,可提高波纹管的径向刚度,减少波纹管的轴向刚度。
- Abstract:
- For the reinforced S-shaped bellows in the fuel swing device of a liquid rocket engine, the theoretical analysis and numerical simulation are used to study its compression strength.The research shows that the finite element model of the reinforced S-shaped bellows for the pressure resistance analysis must be defined as a layered model, becase the simplified single layer model may lead to larger errors.Reasonable selection of the mesh density of the finite element model can not only effectively ensure the accuracy of the compression strength,but also reduce the computing time.Under the condition that the material, total thickness, wave shape and other parameters of the bellows are constant, appropriately increasing the number of bellows layers can increase the radial stiffness and reduce the axial stiffness.
参考文献/References:
[1] EJMA.Standards of the expansion joint manufacturers association[S].7th ed. New York:EJMA,INC,1998.
[2] BECHT. The effect of bellowsconvolution profile on stress distribution and plastic strain concentration[J]. ASME, Fitness for Service, Stress Classification and Expansion Joint Design, 2000(401): 201-209.
[3] BECHT. Fatigue of bellows, a new design approach[J]. International Journal of Pressure Vessels and Piping, 2000(77): 846-850.
[4] BELTAEV A K, ZINOVIEVA T V, SMIRNOV K.K. Theoretical and experimental studies of the stress-strain state of expansion bellows as elastic shells[J]. St. PetersburgPolytechnical University Journal: Physics and Mathematics, 2017(3): 7-14.
[5] 葛子余.金属软管[M].北京:宇航出版社,1985.
[6] 朱卫平. U型波纹管及相关结构唤醒屈曲的有限元分析(Ⅰ)—基本方程及环板的屈曲[J]. 应用力学学报,2002,19(4): 19-25.
[7] 朱卫平. U型波纹管及相关结构唤醒屈曲的有限元分析(Ⅱ)—半圆环壳的屈曲[J]. 应用力学学报,2003,20(1): 154-156.
[8] 朱卫平. U型波纹管及相关结构唤醒屈曲的有限元分析(Ⅲ)—波纹管平面失稳的机理[J]. 应用力学学报,2003, 20(2): 152-154.
[9] 穆塔里夫·阿赫迈德,程伟,阿斯耶姆·肖凯提.S型焊接金属波纹管的应力仿真与试验研究[J].压力容器,2010,27(1):8-11.
[10] 宋林红,张文良,钱江,等.基于多学科优化方法的金属波纹管疲劳寿命优化设计[C]//第十四届全国膨胀节学术会议论文集.秦皇岛:中国压力容器学会膨胀节委员会,2016.
[11] 郎振华,吴承伟.多层S型波纹管力学性能分析[D].大连:大连理工大学,2012.
[12] 丁雪兴,王悦,刘雪岭,等.机械密封焊接波纹管波片的应力计算及分析[J].兰州理工大学学报,2008,34(1):58-60.
[13] 王占彬,周浩洋,石朝锋,等.一种U型波纹管强度及稳定性分析方法研究[J].兰州强度与环境,2012,39(4):19-24.
[14] 闫松,谭永华,陈建华.高压金属软管应力及参数敏感度分析[J].火箭推进,2013,39(5):60-64.
YAN S,TAN Y H,CHEN J H.Stress and parameter sensitivity analysis of high-pressure metal hose [J].Journal of Rocket Propulsion,2013,39(5): 60-64.
[15] 杨义俊,王心丰.多层波纹管非线性有限元应力分析[J].压力容器,2003,20(9):13-16.
[16] WILLIAMS D K.Catastrophic failure of flex hose bellows due to lateral offset & internal pressure[C]//2007 ASME Pressure Vessels and Piping Antonio. Texas: ASME, 2007:1-9.
[17] 李永生.波形膨胀节实用技术—设计、制造与应用[M].北京: 化学工业出版社, 2000.
[18] 杨义俊.基于 ANSYS 的金属软管非线性有限元应力分析[D].南京: 南京航空航天大学, 2004.
[19] 陈晔, 李永生, 顾伯勤, 等.用 ANSYS 软件对U形波纹管的有限元分析[J].压力容器, 2000, 17(3): 34-36.
备注/Memo
收稿日期:2017-12-21
基金项目:国防科技重点实验室基金(6142704040217047)
作者简介:徐学军(1981—),男,硕士,高级工程师,研究领域为液体火箭发动机结构强度设计