航天推进技术研究院主办
YOU Gang,WANG li.Study on dynamic performance of magnetic self-locking valve[J].Journal of Rocket Propulsion,2019,45(01):42-47.
磁锁式双稳态自锁阀响应特性理论研究
- Title:
- Study on dynamic performance of magnetic self-locking valve
- 文章编号:
- 1672-9374(2019)01-0042-06
- 分类号:
- V414
- 文献标志码:
- A
- 摘要:
- 空间飞行器推进系统中大量使用磁锁式双稳态自锁阀,其响应特性是设计中的重要环节,直接影响推进系统的精确控制。由于自锁阀一般采用双线圈控制,两驱动线圈间存在互感现象,响应特性的设计计算与电磁阀有明显区别,有必要对自锁阀的响应特性进行理论分析研究。根据磁锁式双稳态自锁阀工作原理及特点,建立控制电路和磁路等效模型,基于电磁感应定律推导出模型对应的电压平衡方程和力平衡方程,求解得出了自锁阀响应特性简化理论计算公式。公式解释了自锁阀在控制释放回路中感应电流会延长响应时间、增加电流比的原理,明确了自锁阀的动作裕度不会因电流比变化而受到影响的特点。根据推导出的简化理论公式对阀门产品响应特性进行仿真计算,计算结果和产品实际测试数据基本吻合。由简化理论公式研究表明:如自锁阀控制线圈回路中有感应电流,感应电流越大则自锁阀响应时间越长、自锁阀开启或关闭电流比越大,但自锁阀克服外力动作的能力不会因为感应电流存在而受到影响。
- Abstract:
- In the space vehicle propulsion system, a large number of magnetic bistable self-locking valves are used. The response character is very important factor in the design, which directly affects the control accuracy of the propulsion system. The self-locking valve is generally controlled by a double coil and response characteristics of design calculation is different from the solenoid valve, so it is necessary to carry out response analysis of the self-locking valve. In this paper, based on the magnetic bistable self-locking valve working principle and characteristics, the control circuit and the equivalent magnetic circuit model were established. Based on the electromagnetic law mode, the self-locking valve response formula was obtained. The formula explains the self-locking valve in the control release induced current in the circuit will extend the response time and increase the current ratio, while the action of self-locking valve margin will not be affected by changes in current ratio characteristics. According to the simplified formula deduced, the valve response character was simulated and the results fit well with test data. The research results from simplified formula indicate that the response time and current ratio of valve unlocking and shutting off are larger with larger induced current when there is induced current in control circle of the self-locking valve. But the action ability of the self-locking valve to overcome outer force is not affected by the induced current.
参考文献/References:
[1] 廖湘恩.航空电器[M].北京:国防工业出版社,1981.
[2] 荣西林.电工与电子技术[M].北京:冶金工业出版社,2001.
[3] 秦永涛,沈继彬,李建军,等.低温气动阀动态响应特性的非线性分析方法[J].火箭推进,2013,39(6):23-28.
QIN Y T, SHEN J B,LI J J,et al.Nonlinear analysis method for dynamic responding characteristics of cryogenic pneumatic valve[J].Journal of Rocket Propulsion, 2013,39(6):23-28.
[4] 赵博.Ansolf12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010.
[5] 刘国强.Ansolf工程电磁场有限元分析[M].北京:电子工业出版社,2005.
[6] 戴佳,黄敏超,余勇,等.电磁阀动态响应特性仿真研究[J].火箭推进,2007,33(1):40-48.
DAI J, HUANG M C, YU Y, et al.Simulation on the dynamic response characteristics of Solenoid Valve [J].Journal of Rocket Propulsion, 2007,33(1):40-48.
[7] 袁洪滨,张民庆,孙彦堂.基于AMESim的直动式电磁阀动态仿真研究[J].火箭推进,2011,37(5):30-35.
YUAN H B, ZHANG M Q, SUN Y T.AMESim-based simulation analysis of dynamic characteristics of direct-acting solenoid valve[J].Journal of Rocket Propulsion, 2011,37(5):30-35.
[8] 许闯,尤罡.电磁阀磁路结构对动作寿命的影响[J].火箭推进,2013,39(5):70-74.
XU C, YOU G.Influence of structure of solenoid valve on its motion life[J].Journal of Rocket Propulsion, 2013,39(5):70-74.
[9] 张榛.电磁阀动态响应特性的有限元仿真与优化设计[J].空间控制技术与应用,2008,34(5):53-56.
[10] 李庆扬,关治,白峰杉.数值计算原理[M].北京:清华大学出版社,2000.
[11] 杨亦婷,李进贤,张博斌.轨姿控推进系统用电磁阀性能仿真研究[J].火箭推进,2016,42(2):19-24..
YANG Y T, LI J X, ZHANG B B. Simulation research on performance of solenoid valve for orbit and attitude control propulsion system[J].Journal of Rocket Propulsion,2016,42(2):19-24.
[12] 马晓琛,李国强,苏静静,等. 磁性双位自锁阀的电磁特性分析及验证[C]// 第九届全国流体传动与控制学术会议. 杭州: 中国机械工程学会流体传动与控制分会,2016.
[13] 任志彬,王宗伟,常志鹏,等.电磁阀用自锁电磁铁吸力与电压关系研究[J].推进技术,2016,37(7):1372-1379.
备注/Memo
收稿日期:2017-05-16
基金项目:航天系统装备部资助项目(30506070401); 上海市科学技术委员会资助项目(17DZ2280800)
作者简介:尤 罡(1977—),男,高级工程师,研究领域为飞行器推进系统阀门设计