航天推进技术研究院主办
ZHANG Liuhuan,MA Huajie,ZHOU Jianping,et al.Performance analysis of hydrazine ATR with different dissociated ratios of NH3different[J].Journal of Rocket Propulsion,2019,45(02):16-19,52.
氨解离度对无水肼ATR发动机性能影响研究
- Title:
- Performance analysis of hydrazine ATR with different dissociated ratios of NH3different
- 文章编号:
- 1672-9374(2019)02-0016-04
- Keywords:
- Hydrazine; ATR; dissociated ratio of NH3
- 分类号:
- V439
- 文献标志码:
- A
- 摘要:
- 基于无水肼ATR发动机,开展了氨解离度对涡轮前燃气及发动机总体性能的影响研究,对不同氨解离度时无水肼ATR发动机性能进行计算对比。结果显示,随着氨解离度x升高,无水肼分解燃气温度降低,H2、N2在分解混合气中的质量百分比升高,燃气比热比、气体常数数值升高; 在地面状态同一转速下,x越小,发动机比冲越高。在100%物理转速时,x=0.29对应的发动机比冲最高且为808 s,无水肼流量为0.999 kg/s,较x=0.8发动机比冲提高最大约7.3%,无水肼流量减小约7.33%; 同一高空条件100%转速下,x越小,发动机比冲越高。在22 km/3.5Ma条件下,x=0.29较x=0.8发动机比冲提高最大约14.6%,无水肼流量减小约8.2%。在同一ATR发动机、同一转速下,氨解离度越低,涡轮等熵功越大,无水肼流量越小,发动机比冲越高。
- Abstract:
- Based on hydrazine ATR, performance analysis of hydrazine ATR with different dissociated ratios of NH3(x)was presented here.And the calculation and comparison about performance of ATR with different x were carried out.The results show that as x increases, temperature of gas decreases which is dissociated from hydrazine by catalysis, mass percentage of H2, N2 increases, and the value of specify heat ratio and gas constant goes up.On the ground state, the specify impulse of ATR increases as x decreases under the same rev.When the physical rev is 100% and x=0.29, the specify impulse reaches top 808s, which is 7.3% higher than that at x=0.8, and the mass flow rate of hydrazine is 0.999 kg/s, which is 7.33% lower than that at x=0.8.Under the condition of high altitude, the specify impulse of ATR increases as x decreases under the same rev.The specify impulse and mass flow rate, with x of 0.29, are 14.6% and 8.2% higher than that at x =0.8 when the flight condition is 22 km/3.5Ma respectively.With the same ATR engine and rev, as the dissociated ratio of NH3 decreases, isentropic work of turbine increases, mass flow rate of hydrazine decreases and specify impulse of ATR increases.
参考文献/References:
[1] CHRISTENSEN K.Air turborocket/vehicle performance comparison[J].Journal of Propulsion and Power, 1999, 15(5): 706-712.
[2] 南向谊,王拴虎,李平.空气涡轮火箭发动机研究的进展及展望[J].火箭推进,2008,34(6):31-35.
NAN Xiangyi,WANG Shuanhu,LI Ping.Investigation on status and prospect on air turbine rocket[J].Journal of Rocket Propulsion,2008,34(6):31-35.
[3] THOMAS M E, BOSSARD J A.OSTRANDER M J.Addressing emerging tactical missile propulsion challenges with the solid propellant air-turbo-rocket[C]//The 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Alabama:AIAA,2000.
[4] BOSSARD J A, THOMAS M E.The influence of turbo machinery characteristics on air turbo rocker engine operation:AIAA 2000-3308[R].[S.L.]:AIAA, 2000.
[5] OSTRANDER M J, THOMAS M E.Air turbo-rocket solid propellant development and testing:AIAA 1997-3258 [R].[S.L.]:AIAA,1997.
[6] TANATSUGU N, CARRICK P.Hypersonic and combined cycle propulsion for earth-to-orbit applications:AIAA 2003-2586[R].[S.L.]:AIAA,2003.
[7] MIVOBATA K, KIMURA H, SUGIYAMA H.Conceptual design of flight demonstrator vehicles for the ATREX engine[C]//The 12th AIAA International Space Planes and Hypersonic Systems and Technologies.Virginia:AIAA,2003.
[8] 李文龙,郭海波,南向谊.空气涡轮火箭发动机热力循环特性分析[J].火箭推进,2015,41(4):48-54.
LI Wenlong,GUO Haibo,NAN Xiangyi.Analysis on thermodynamic cycle characteristics of air-turbo-rocket engine[J].Journal of Rocket Propulsion,2015,41(4):48-54.
[9] TU Q Y, DING C X, CHEN Y C, et al.Thermodynamic cycle analysis of solid propellant air-turbo-rocket[J]. Journal of Aerospace Power, 2009, 32(2): 269-276.
[10] 屠秋野,陈玉春,苏三买,等.固体推进剂吸气式涡轮火箭发动机的建模及特征研究[J].固体火箭技术,2006,29(5):317-319, 345.
[11] 陈湘,陈玉春,屠秋野,等.固体推进剂空气涡轮火箭发动机的非设计点性能研究[J].固体火箭技术,2008,31(5):445-448.
[12] 陈湘,陈玉春,屠秋野,等.空气涡轮火箭发动机的性能研究[J].弹箭与制导学报,2009,29(2):162-165.
[13] 潘宏亮,周鹏.空气涡轮液体火箭发动机建模与仿真研究[J].西北工业大学学报,2009,27(4):492-498.
[14] 国防科学技术工业委员会.无水肼:GJB 98-86[S].北京:中国标准出版社,1986.
[15] MIMATO R, HIGASHINO K, TANGATSUGU N.Design and development of bio-ethanol fueled GG-cycle air turbo ramjet engine for supersonic UAV: ISABE-2013-1654 [R].[S.L.]:ISABE,2013.
[16] MINATO R, HIGASHINO H, TANATSUGU N.Design and performance analysis of bio-ethanol fueled GG-cycle air turbo ramjet engine:AIAA 2012-0842[R].[S.L.]:AIAA,2012.
[17] 周汉申.单组元液体火箭发动机设计与研究[M].北京:中国宇航出版社,2009.
[18] 楚武利,刘前智,胡春波.航空叶片机原理[M].西安:西北工业大学出版社,2009.
相似文献/References:
[1]孟洪波,王亚军,方 涛.气相色谱法检测无水肼中水含量的不确定度评定[J].火箭推进,2011,37(03):68.
MENG Hong-bo,WANG Ya-jun,FANG Tao.Uncertainty evaluation of detecting the water content in anhydrous hydrazine with gas chromatography[J].Journal of Rocket Propulsion,2011,37(02):68.
[2]李永洲,李哲,李光熙,等.ATR/冲压组合动力高超声速飞行器性能分析[J].火箭推进,2018,44(03):6.
LI Yongzhou,LI Zhe,LI Guangxi,et al.Performance analysis of hypersonic aircraft with ATR/ramjet combined power[J].Journal of Rocket Propulsion,2018,44(02):6.
[3]张留欢,杜 泉,逯婉若,等.裂解度对甲醇ATR发动机的性能影响分析[J].火箭推进,2019,45(01):31.
ZHANG Liuhuan,DU Quan,LU Wanruo,et al.Effect of cracking ratio on the performance of methanol ATR engine[J].Journal of Rocket Propulsion,2019,45(02):31.
备注/Memo
收稿日期:2017-11-02; 修回日期:2018-01-02 基金项目:装备预研航天科技联合基金(6141B060626040) 作者简介:张留欢(1986—),男,硕士,工程师,研究领域为组合推进系统气动热力技术