航天推进技术研究院主办
MU Penggang,LIU Wenchao,DU Dahua,et al.Design scheme of composite truss frame[J].Journal of Rocket Propulsion,2019,45(02):26-31.
复合材料桁架式机架设计方案
- Title:
- Design scheme of composite truss frame
- 文章编号:
- 1672-9374(2019)02-0026-06
- Keywords:
- composite; thrust frame; truss; upper-stage engine
- 分类号:
- V250.3
- 文献标志码:
- A
- 摘要:
- 为进一步降低某上面级发动机机架结构质量,对其高强度钢的桁架式机架开展了以复合材料替代金属的设计方案研究。通过对原金属桁架式机架力学设计特性分析,在保持原结构对接参数及外形尺寸不变的情况下,提出了一种碳纤维/环氧树脂复合材料机架的设计方案,并重点对杆件结构进行详细设计及影响参数分析。首先,采用基于Matlab软件的遗传算法优化工具箱对杆件截面尺寸及纤维缠绕角度优化,然后对接头结构进行设计,并组装成复合材料整体机架,对强度、刚度及稳定性等参数分析及校核。研究结果表明:新设计复合材料机架在满足原机架基本设计要求基础上,相对于原机架实现了40%以上的减重。研究方法可为复合材料桁架结构设计研究提供借鉴。
- Abstract:
- The thrust frame is a key transition component transfering the thrust from liquid rocket engine to the launch vehicle, and it performs an important role in the overall layout and transportation of the engine.In order to further reduce the structural weight of an upper-stage engine frame, the design scheme of composite thrust truss is investigated to substitute for high-strength steel frame.Based on the mechanical characteristic analysis for the original metal truss frame, a new structure scheme of carbon fiber/epoxy composite frame is proposed while the interface parameters and structure dimensions are same, and the detailed design together with affecting factors analysis are further studied.Firstly, section parameters and fiber winding angles of composite truss were optimally designed using the genetic algorithm toolbox of Matlab software.Secondly, the composite joints were designed by material equivalent method and the whole composite thrust truss was assembled.Finally, its strength, stiffness and stability were all evaluated.The results show that the newly designed composite frame achieves more than 40% weight loss on the basis of meeting the basic design requirements.The proposed method can provide reference for the structure design of composite truss structure.
参考文献/References:
[1] SCHUTZE R. Lightweight carbon fibre rods and truss structures[J].Materials & Design, 1997, 18(4/6): 231-238.
[2] 熊波.三角截面狭长构型复合材料桁架承载性能分析[D].哈尔滨:哈尔滨工业大学,2013.
[3] 罗锡林.复合材料桁架融合节点设计及其承载性能分析[D].哈尔滨:哈尔滨工业大学,2013.
[4] EHRLICH C F. Why the X-33 venture star gave SSTO a bad name[C]//AIAA SPACE Conference and Exposition. Pasadena, CA:AIAA, 2009.
[5] GARY L.X-33 reusable launch vehicle demonstrator, spaceport and range[C]//AIAA SPACE Conference and Exposition. Long Beach, CA:AIAA, 2011.
[6] 马海全,李竞蔚.复合材料桁架式发动机支架改型设计分析[J].强度与环境,2006,33(4):39-43.
[7] 章令晖,李甲申,王琦洁,等.航天器用复合材料桁架结构研究进展[J].纤维复合材料,2013(4):62-68.
[8] 彭超义.空间运载器推力支架用复合材料管件轴压性能研究[D].长沙:国防科技大学,2006.
[9] 何昆,耿东兵,赵伟栋,等.树脂基复合材料发动机机架结构研究[J].试验技术与试验机,2008(2):10-12.
[10] 穆朋刚,李斌潮,杜大华,等.液体火箭发动机复合材料机架初步设计研究[J].火箭推进,2017,43(3):35-41.
MU Penggang,LI Binchao,DU Dahua,et al.Preliminary design for composite thrust frame of liquid rocket engine[J].Journal of Rocket Propulsion,2017,43(3):35-41.
[11] 朱宁昌.液体火箭发动机设计(上)[M].北京:宇航出版社,1994.
[12] 中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社,2001.
[13] 沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
[14] 雷英杰,张善文,李续武,等.MATLAB 遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
相似文献/References:
[1]廖云龙,吴 剑.基于Riks方法的复合材料贮箱稳定性分析[J].火箭推进,2013,39(05):92.
LIAO Yun-long,WU Jian.Stability analysis based on Riks method for composite material vessel[J].Journal of Rocket Propulsion,2013,39(02):92.
[2]于 建,晏 飞.可重复使用运载器复合材料低温贮箱应用研究[J].火箭推进,2009,35(06):19.
Yu Jian,Yan Fei.Study on application of composite cryogenic tank for reusable launch vehicle[J].Journal of Rocket Propulsion,2009,35(02):19.
[3]张万卿,李洪春,史 勇.挖补法修补复合材料层压板压缩性能[J].火箭推进,2020,46(04):103.
ZHANG Wanqing,LI Hongchun,SHI Yong.Research on compressive properties of composite laminates by patching repair[J].Journal of Rocket Propulsion,2020,46(02):103.
[4]蔡 强,赵晓宁,李新田,等.纤维缠绕复合材料压力容器多型封头对比分析[J].火箭推进,2020,46(06):90.
CAI Qiang,ZHAO Xiaoning,LI Xintian,et al.Comparative analysis on multi-type domes of filament-wound
composite pressure vessels[J].Journal of Rocket Propulsion,2020,46(02):90.
[5]叶书睿,郝文宇,孙直,等.考虑增材制造悬垂约束的传力机架轻量化设计方法[J].火箭推进,2023,49(04):26.
YE Shurui,HAO Wenyu,SUN Zhi,et al.Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing[J].Journal of Rocket Propulsion,2023,49(02):26.
备注/Memo
收稿日期:2018-07-18; 修回日期:2018-12-07 基金项目:装发部预先研究项目(41410040202) 作者简介:穆朋刚(1983—),男,博士,高级工程师,研究领域为液体火箭发动机结构动力学设计及分析