航天推进技术研究院主办
ZHANG Kaihong,JIANG Xin,XIAO Mingjie,et al.Characteristics of water hammer in shutting based on FSI[J].Journal of Rocket Propulsion,2019,45(02):36-43.
基于流固耦合理论的关机水击特性
- Title:
- Characteristics of water hammer in shutting based on FSI
- 文章编号:
- 1672-9374(2019)02-0036-08
- 分类号:
- TV137
- 文献标志码:
- A
- 摘要:
- 为了考虑结构变形对关机水击特性的影响,应用Workbench15.0构建双向流固耦合分析系统,模拟关机水击过程,通过压力和流线的分布图分析压力波传播和能量耗散。根据轨控发动机大流量、高室压、快响应的发展趋势,设计了8个工况来分析流量、压力、阀门关闭时间对水击特性的影响。仿真结果表明:在水击发生后,水击的能量只有小部分通过从入口流出和结构变形而耗散,大部分水击能量的耗散是由于流体的粘性损失。流量只对水击峰值压力有影响,且流量越大,水击峰值压力越大。阀门关闭时间的缩短增加了峰值压力和水击频率,减缓了衰减速率。管路背压对水击特性几乎没有影响。因此,在进行轨控发动机高室压水击试验时,在保证流量和关阀时间相同的情况下,减小出口背压,可以得出与高背压一致的水击压力变化曲线。
- Abstract:
- In order to consider the effect of structural deformation on water hammer characteristics, two-way FSI analysis system was built to simulate water hammer.The propagation of pressure wave and energy dissipation were analyzed through pressure and streamline distribution.According to the development trend of orbit-control engine, eight working conditions were designed to analyze the effect of backpressure, flux and valve closing time on water hammer characteristics.The simulation results indicate that, only a small part of the energy of water hammer is dissipated through flowing out from the inlet and the structural deformation, and most of the energy dissipation is due to the viscous loss of the fluid.The flux only affects the peak pressure of water hammer.The greater the flux is, the larger the peak pressure of water hammer is.The shortening of valve closing time increases peak pressure and frequency of oscillation, and reduces the attenuation rate.Backpressure has no effect on water hammer characteristics.Therefore, in the high-pressure water hammer test of orbit-controlled engine, the outlet back-pressure can be reduced under the same flux and valve closing time, and the water hammer pressure curve consistent with that under high backpressure can be obtained.
参考文献/References:
[1] 杭观荣,洪鑫,康小录.国外空间推进技术现状和发展趋势[J].火箭推进,2013,39(5):7-15.
HANG Guanrong,HONG Xin,KANG Xiaolu.Current status and development trend of space propulsion technologies abroad[J].Journal of Rocket Propulsion,2013,39(5):7-15.
[2] 刘晓伟,姚明明,李佳明,等.轻质高比冲1 000N双组元轨控发动机研制[J].火箭推进,2015,41(4):8-12.
LIU Xiaowei,YAO Mingming,LI Jiaming,et al.Development of 1 000N bipropellant orbit control engine with light weight and high specific impulse[J].Journal of Rocket Propulsion,2015,41(4):8-12.
[3] 王乃世,罗军,张俊锋.水击压力校准系统快关阀的研发与应用[J].火箭推进,2018,44(4):36-39.
WANG Naishi, LUO Jun, ZHANG Junfeng.Development and application of quick-closing valve for water hammer pressure calibration system [J].Journal of Rocket Propul-sion, 2018,44(4):36-39.
[4] 吴持恭.水力学(下册)[M].北京:高等教育出版社,2003:324-369.
[5] 张国忠.管道瞬变流动分析[M].东营:石油大学出版社,1994.
[6] 张峥岳,康乃全.轨姿控液体火箭发动机水击仿真模拟[J].火箭推进,2012,38(3):12-16.
ZHANG Zhengyue, KANG Naiquan.Simulation of water hammer in liquid rocket engine of orbit and attitude control sys-tem[J].Journal of Rocket Propulsion, 2012, 38(3): 12-16.
[7] 侯咏梅.水击理论与计算研究[D].郑州:郑州大学,2003.
[8] 李树慧.水击方程的完善与计算研究[D].郑州:郑州大学,2006.
[9] GUINOT V.Riemann solvers for water hammer simulations by Godunov method[J].International Journal for Numerical Methods in Engineering, 2002(49): 851–870.
[10] 郭兰兰,耿介,石硕,等.基于UDF方法的阀门变速关闭过程中的水击压强计算研究[J].山东大学学报(理学版),2014,43(3):27-30, 36.
[11] 张立翔,杨柯,黄文虎.FSI效应对管道水击运动特性的影响分析[J].水电能源科学,2001,19(4):43-47.
[12] 陈香林,周文禄.压力管道流固耦合振动特性分析[J].火箭推进,2007,33(5):27-31.
CHEN Xianglin,ZHOU Wenlu.Vibration characteristic analysis of pressure pipes with fluid-structure interaction[J].Journal of Rocket Propulsion,2007,33(5):27-31.
[13] 赵观辉.管路流固耦合振动特性的数值分析方法研究[D].北京: 中国舰船研究院,2011.
[14] CESANA P, BITTER N.Modeling and analysis of water-hammer in coaxial pipes[J].Journal of Fluids and Structures, 2014, 51(3): 225-239.
[15] 朱雨.内外充液换热管流体诱导振动双向流固耦合作用机理的数值模拟研究[D].南昌:南昌大学,2015.
[16] 宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012.
[17] 张岩.ANSYS Workbench 15.0 有限元分析[M].北京:机械工业出版社,2014:259-270.
[18] 倪昊煜.水击理论研究[D].郑州:郑州大学,2004.
相似文献/References:
[1]薛 杰,何尚龙,杜大华,等.充液容器流固耦合模态仿真分析研究[J].火箭推进,2015,41(01):90.
XUE Jie,HE Shang-long,DU Da-hua,et al.Study on fluid-structure coupling modal simulation
of liquid filling container[J].Journal of Rocket Propulsion,2015,41(02):90.
[2]郑丽,李清廉,罗泽明,等.减压器开启过程内部流场的
动态仿真和特性研究[J].火箭推进,2009,35(01):36.
Zheng Li,Li Qinglian,Luo Zeming,et al.Simulation of transient flow field and dynamic
characterlstlcs o士pressure reducing valve during start-up[J].Journal of Rocket Propulsion,2009,35(02):36.
[3]陈香林,周文禄.压力管道流固耦合振动特性分析[J].火箭推进,2007,33(05):27.
Chen Xianglin,Zhou Wenlu.Vibration characteristic analysis of pressure pipes with fluid-structure interaction[J].Journal of Rocket Propulsion,2007,33(02):27.
[4]周晨初,李舒欣,陈宏玉,等.液体火箭发动机关机水击特性仿真[J].火箭推进,2021,47(01):70.
ZHOU Chenchu,LI Shuxin,CHEN Hongyu,et al.Simulation on water hammer during liquid rocket engine shutdown[J].Journal of Rocket Propulsion,2021,47(02):70.
备注/Memo
收稿日期:2018-11-18; 修回日期:2019-01-16 基金项目:国家重点实验室开发基金(6142704040107) 作者简介:张凯宏(1993—),男,硕士,研究领域为火箭发动机系统设计