航天推进技术研究院主办
YANG Jinhui,WANG Zhaohui,TIAN Yuan,et al.Research on recombustion properties of hydrogen-rich gas with air at sub-atmospheric pressure[J].Journal of Rocket Propulsion,2019,45(03):9-14.
富氢燃气与空气低压补燃特性研究
- Title:
- Research on recombustion properties of hydrogen-rich gas with air at sub-atmospheric pressure
- 文章编号:
- 1672-9374(2019)03-0009-06
- Keywords:
- hydrogen-rich gas; recombustion at sub-atmospheric pressure; reaction rate; hydrogen-rich gas temperature; hydrogen-rich gas component
- 分类号:
- V434.1
- 文献标志码:
- A
- 摘要:
- 氢氧火箭发动机在飞行过程中排出富氢燃气与周围低压空气发生补燃,直接改变发动机周围的热环境,影响发动机各组件性能。通过试验及仿真研究了不同燃气温度、燃气组分对于富氢燃气低压补燃特性的影响。富氢燃气与空气的低压补燃试验表明:常压下富氢燃气温度高于932 K时发生补燃,低于877 K时不发生补燃; 富氢燃气温度高于950 K,环境压力60 kPa时富氢燃气发生补燃,30 kPa时不发生补燃; 仿真与试验对比分析发现最大化学反应速率超过10-9情况下能观测到宏观的富氢燃气与空气的补燃现象,燃气温度和氢气含量越高,其与空气发生补燃的临界压力越低。当压力低于10 kPa时,燃气温度1 200 K,氢气含量87.4%也无法与空气发生补燃。
- Abstract:
- The hydrogen-rich exhaust gas from the hydrogen-oxygen rocket engine recombustion with surrounding low-pressure air, which directly changes the thermal environment of engine and will be destructive to the engine components performance. Experiments and simulation were conducted to study the effects of different hydrogen-enriched gas temperature and component on the flammability limit of hydrogen-rich gas with air at sub-atmospheric pressures. Flame can be observed when the gas temperature was higher than 932 K at atmospheric pressure, and no flame when gas temperature lower than 877K. The 950 K hydrogen-rich gas will recombust with air when environment pressure is higher than 60 kPa, and there is no reaction when the pressure below 30 kPa. According to the flammability simulation results, recombustion can be observed when the reaction rate exceeds 10-9. Simulation results indicate that the hydrogen-rich gas flammability pressure limit reduce with higher gas temperature and hydrogen ratio. As environment pressure lower than 10 kPa, the 1200 K gas which consists of 87.4% hydrogen could not recombust with air.
参考文献/References:
[1] 乔野, 聂万胜, 丰松江, 等.液氢/液氧火箭发动机尾焰流场特性仿真研究[J].火箭推进,2015,41(5):43-48.
QIAO Y, NIE W S, FENG S J, et al.Simulation research on fluid field characteristics of LH2/LOX rocket engine plume[J].Journal of Rocket Propulsion,2015,41(5):43-48.
[2] 乔野,聂万胜,丰松江, 等.多喷管液体火箭动力系统尾焰流场特性研究[J].推进技术,2017,38(2):356-363.
[3] KUMAR R K.Flammability limits of hydrogen-oxygen-diluent mixtures[J].Journal of Fire Sciences, 1985,3(4):245-262.
[4] 李亚裕.液体推进剂[M].北京:中国宇航出版社,2011.
[5] 乔野,聂万胜,丰松江,等.复燃对氢氧火箭发动机尾焰流场及辐射特性影响数值研究[J].导弹与航天运载技术,2016(2):22-25.
[6] KUZNETSOV M, KOBELT S, GRUNE J, et al.Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures[J].International Journal of Hydrogen Energy,2012,37(22):17580-17588.
[7] JONES T.Explosive nature of hydrogen in partial-pressure vacuum[M].USA:John Wiley & Sons, Inc,2008.
[8] DAVIS S G, JOSHI A V, WANG H, et al.An optimized kinetic model of H2/CO combustion[J].Proceedings of the Combustion Institute,2005,30(1):1283-1292.
[9] HONG Z K, DAVIDSON D F, HANSON R K.An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements[J].Combustion and Flame,2011, 158(4):633-644.
[10] WILLIAMS F A.Detailed and reduced chemistry for hydrogen autoignition[J].Journal of Loss Prevention in the Process Industries,2008,21(2):131-135.
[11] YETTER R A, DRYER F L, RABITZ H.A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics[J].Combustion Science and Technology, 1991,79(1):97-128.
[12] BOIVIN P, JIMNEZ C, SNCHEZ A L, et al.A four-step reduced mechanism for syngas combustion[J].Combustion and Flame,2011, 158(6):1059-1063.
[13] MAHALINGAM S, CHEN J H, VERVISCH L.Finite-rate chemistry and transient effects in direct numerical simulations of turbulent nonpremixed flames[J].Combustion and Flame, 1995, 102(3):285-297.
[14] GRAN I R, MAGNUSSEN B F.A numerical study of a bluff-body stabilized diffusion flame.part 2.influence of combustion modeling and finite-rate chemistry[J].Combustion Science and Technology, 1996, 119(1):191-217.
[15] LI J, ZHAO Z W, KAZAKOV A, et al.An updated comprehensive kinetic model of hydrogen combustion[J].International Journal of Chemical Kinetics,2004,36(10):566-575.
[16] 周学进. 耦合详细反应机理的非预混富氢燃烧的大涡模拟[D].合肥:中国科学技术大学,2016.
[17] 任泓帆,朱定强.液体火箭发动机尾焰复燃对红外辐射特性的影响[J].推进技术,2018,39(6):1227-1233.
备注/Memo
收稿日期:2018-09-01
作者简介:杨进慧(1987—),女,博士,研究领域为氢氧燃烧、推力室设计