航天推进技术研究院主办
PU Guangrong,SHAN Lei,ZHAO Xiaohui,et al.Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J].Journal of Rocket Propulsion,2019,45(05):17-24.
泵压式多次起动发动机起动过程仿真研究
- Title:
- Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine
- 文章编号:
- 1672-9374(2019)05-0017-08
- Keywords:
- turbopump-fed; liquid rocket engine; multi-startup; start-up characteristics; simulation analysis
- 分类号:
- V430
- 文献标志码:
- A
- 摘要:
- 某型上面级液体火箭发动机采用可反复充填的起动箱作为起动系统,实现了泵压式发动机的多次起动,但相比火药起动器炮式起动方式,发动机起动过程更为复杂。为研究发动机起动过程工作特性,应用Modelica语言,基于MWorks平台建立了起动箱多次起动泵压式发动机动态特性仿真模型,对发动机起动过程进行了仿真研究,分析了起动箱压力、起动箱内推进剂消耗量、起动参数设置对起动过程的影响。结果表明:发动机每次起动推进剂消耗量远小于起动箱设计容积; 起动过程参数变化呈现“挤压起动-再充填-稳态工作”三个平台变化的显著特征; 发动机在较大起动箱压力范围内均能够保证正常起动。发动机热试车结果验证了发动机起动时序设置的合理性和起动箱参数设置对起动过程的影响。
- Abstract:
- By adopting a refillable start-tank as the starting system in a upper stage liquid rocket engine, the multi-startup of the turbopump-fed engine has been realized, but the engine start-up process is more complicated than the gun-type startup mode with powder starter.In order to understand the working characteristics of the multi-startup process, a dynamic simulation model was established to achieve the performance parameters of the multi-startup process, which was based on the MWorks platform using Modelica language.The simulation results include the effect of startup box pressure, propellant consumption of startup box and main starting parameters on the startup process.The propellant consumption of startup box is much less than the design volume of startup box during every startup.During the startup process, the parameter variation shows the remarkable characteristics with three platforms and is “extrusion start-refill-steady state work”.In addition, the engine can start up normally within a wide range of startup box pressure.The results of engine hot firing test verify the rationality of the engine startup sequence setting and the effect of parameter settings on startup process.
参考文献/References:
[1] YAMANISHI N,KIMURA T, TAKAHASHI M, et al.Transient analysis of the LE-7A rocket engine using the rocket dynamic simulator(REDS):AIAA 2004-3850[R].USA:AIAA,2004.
[2] DURTESTE S.A transient model of the VINCI cryogenic upper stage rocket engine:AIAA 2007-5531[R].USA:AIAA,2007.
[3] MATTEO F D, ROSA M D.Start-up transient simulation of a liquid rocket engine: AIAA 2011-6032 [R].USA:AIAA, 2011.
[4] 赵建军, 丁建完, 周凡利, 等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报, 2006, 18(S2): 570-573.
[5] 张小平.补燃循环发动机起动过程仿真研究[J].火箭推进, 2003, 29(3): 18-21.ZHANG X P.Simulation study on starting process of a supplementary combustion cycle engine [J].Journal of Rocket Propulsion, 2003, 29(3): 18-21.
[6] 杨永强, 刘红军, 徐浩海, 等.补燃循环发动机强迫起动研究[J].火箭推进, 2011, 37(2): 14-18.YANG Y Q, LIU H J, XU H H, et al.Research on forced start-up of staged combustion engine[J].Journal of Rocket Propulsion, 2011, 37(2): 14-18.
[7] 张卫红, 李玲玲, 颜勇,等.大推力氢氧发动机起动瞬态特性仿真研究[J].航天推进与动力, 2004(4): 7-12.
[8] 肖立明, 罗巧军.膨胀循环发动机起动过程研究[J].火箭推进, 2007, 33(1): 7-11.XIAO L M, LUO Q J.Investigation on start-up process of expander cycle liquid propellant rocket engine[J].Journal of Rocket Propulsion, 2007, 33(1): 7-11.
[9] 尘军, 王桁.高压补燃氢氧发动机系统动态仿真[J].航天推进与动力, 2008(2): 15-21.
[10] 刘上, 王艺杰, 程晓辉, 等.小推力泵压式发动机自身起动过程仿真分析[J].火箭推进, 2016, 42(4): 7-13.LIU S, WANG Y J, CHENG X H, et al.Simulation of self start-up process for low thrust pump-fed rocket engine[J].Journal of Rocket Propulsion, 2016, 42(4): 7-13.
[11] 张金容, 汪亮.液体火箭发动机起动过程的动态仿真计算[J].低温工程, 2008(2): 22-27.
[12] 黄仕启, 刘登丰.上面级发动机瞬态工作过程的模块化建模仿真与工程应用[J].航天推进与动力, 2012(3):39-35.
[13] 苏龙斐, 张黎辉, 潘海林.卫星推进系统发动机启动过程数值仿真[J].航空动力学报, 2005, 20(4): 698-701.
[14] 陈宏玉, 刘红军, 刘上.推进剂管路充填过程的数值模拟[J].航空动力学报, 2013, 28(3): 561-566.
[15] 黄其殷, 王幸果, 刘上, 等.液氧/煤油发动机起动箱仿真与试验研究[J].火箭推进, 2015, 41(3): 21-26.HUANG Q Y, WANG X G, LIU S, et al.Simulation and test study on starting box of LOX/kerosene rocket engine[J].Journal of Rocket Propulsion, 2015, 41(3): 21-26.
[16] 陈阳, 张振鹏, 瞿骞, 等.液体火箭发动机试验台贮箱增压系统数值仿真[J].航空动力学报, 2007, 22(1): 96-101.
[17] 陈宏玉, 刘红军.液体火箭发动机瞬态特性模型库及其应用[C]//中国宇航学会液体专业委员会2013年学术会议论文集.安康:中国宇航学会液体专业委员会, 2013.
相似文献/References:
[1]张涛,唐虎,周江平,等.可贮存推进剂泵压式液体火箭发动机多次起动系统研究[J].火箭推进,2010,36(03):15.
Study on the multi-start system of turbopump-fed rocket engine with storable propellants[J].Journal of Rocket Propulsion,2010,36(05):15.
[2]唐 虎,张 涛,任 勇.无毒推进剂泵压式变推力发动机工作过程仿真[J].火箭推进,2009,35(06):1.
Tang Hu,Zhang Tao,Ren Yong.Computational simulation of a nontoxic propellant pump-fed variable-thrust engine[J].Journal of Rocket Propulsion,2009,35(05):1.
[3]李元启,刘红军,徐浩海,等.液体火箭发动机动态特性仿真技术研究进展[J].火箭推进,2017,43(05):1.
LI Yuanqi,LIU Hongjun,XU Haohai,et al.Research progress on numerical simulation technology of
liquid rocket engine dynamic characteristics[J].Journal of Rocket Propulsion,2017,43(05):1.
[4]刘锋,申智帅,王波,等.气动增压空间推进系统及相关技术试验研究[J].火箭推进,2017,43(06):38.
LIU Feng,SHEN Zhishuai,et al.Experimental study on pneumatic pressurization space propulsion system and its correlation technology[J].Journal of Rocket Propulsion,2017,43(05):38.
[5]王 丹,陈宏玉,周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进,2018,44(02):28.
WANG Dan,CHEN Hongyu,ZHOU Chenchu.System scheme and performance evaluation of an engine fed by electric pump[J].Journal of Rocket Propulsion,2018,44(05):28.
[6]左 蔚,宋梦华,杨欢庆,等.增材制造技术在液体火箭发动机应用述评[J].火箭推进,2018,44(02):55.
ZUO Wei,SONG Menghua,YANG Huanqing,et al.Application of additive manufacturing technology in liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(05):55.
[7]杜大华,穆朋刚,田川,等.液体火箭发动机管路断裂失效分析及动力优化[J].火箭推进,2018,44(03):16.
DU Dahua,MU Penggang,et al.Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(05):16.
[8]张蒙正,张 玫.航天运载器重复使用液体动力若干问题探讨[J].火箭推进,2019,45(04):9.
ZHANG Mengzheng,ZHANG Mei.Discussion on some problems of reusable liquid-propellant engine[J].Journal of Rocket Propulsion,2019,45(05):9.
[9]石 璞,朱国强,李进贤,等.液体火箭发动机针栓喷注器雾化燃烧技术研究进展[J].火箭推进,2020,46(04):1.
SHI Pu,ZHU Guoqiang,LI Jinxian,et al.Advances in atomized combustion technology research of pintle injector for liquid rocket engines[J].Journal of Rocket Propulsion,2020,46(05):1.
[10]杜大华,王 珺,王红建,等.液体火箭发动机涡轮盘低周疲劳寿命预测[J].火箭推进,2020,46(06):13.
DU Dahua,WANG Jun,WANG Hongjian,et al.Low cycle fatigue life prediction of a liquid rocket
engine turbine disk[J].Journal of Rocket Propulsion,2020,46(05):13.
备注/Memo
收稿日期:2018-02-03; 修回日期:2019-01-02基金项目:装备预先研究项目(51320130212)作者简介:蒲光荣(1977—),男,博士,高级工程师,研究领域为液体火箭发动机总体设计