航天推进技术研究院主办
XU Zhiyu,TAN Yonghua,LI Xiaoming.Numerical computation of water-hammer based on adaptive wavelet collocation method[J].Journal of Rocket Propulsion,2019,45(05):32-37.
基于自适应小波配点法的水击数值计算
- Title:
- Numerical computation of water-hammer based on adaptive wavelet collocation method
- 文章编号:
- 1672-9374(2019)05-0032-06
- Keywords:
- water-hammer; AWCM; numerical computation
- 分类号:
- V430
- 文献标志码:
- A
- 摘要:
- 为了克服传统谱方法计算水击问题的数值振荡,选择具有紧支撑特性的样条小波代替传统的基函数,建立了一维流体运动方程的自适应小波配点计算格式,并对有摩擦和无摩擦的一维管路水击问题进行了数值计算,获得了水击波的传播过程。结果表明:小波配点法能够准确计算水击波的传播过程,在水击波波阵面处,不会因高分辨率出现剧烈的数值振荡现象,精度和分辨率可以同时提高; 自适应算法能够自动捕捉水击波位置,并在水击波局部区域采用高分辨率计算,而在梯度较小区域降低分辨率计算,在保障精度和分辨率的前提下,显著节约计算量。
- Abstract:
- In order to restrain the numerical oscillation of computing water-hammer problem using the traditional spectral method, an Adaptive Wavelet Collocation Method(AWCM)based on the compactly supported spline wavelet was established for the one-dimensional fluid motion equation.The water-hammer problems of one-dimensional pipeline with friction and without friction were numerically computed, and the propagation process of water-hammer wave was obtained.The results show that the Adaptive Wavelet Collocation Method can accurately compute the propagating process of water-hammer wave.At the wavefront, there will be no sharp numerical oscillation phenomenon due to the high resolution, and both the accuracy and resolution can be improved simultaneously.In addition, the method can automatically capture the position of water-hammer wave, and adopt the high resolution in the local area of water-hammer wave while reduce the resolution in the small gradient area, which save the computational cost largely on the premise of guaranteeing the accuracy and resolution.
参考文献/References:
[1] 陈宏玉, 刘红军, 刘上.水击问题的Fourier谱方法计算[J].火箭推进, 2012, 38(3): 7-11.CHEN H Y, LIU H J, LIU S.Spectral-Fourier method for water hammer[J].Journal of Rocket Propulsion, 2012, 38(3): 7-11.
[2] 张峥岳, 康乃全.轨姿控液体火箭发动机水击仿真模拟[J].火箭推进, 2012, 38(3): 12-16.ZHANG Z Y, KANG N Q.Simulation of water hammer in liquid rocket engine of orbit and attitude control system[J].Journal of Rocket Propulsion, 2012, 38(3): 12-16.
[3] 晏政, 彭小辉, 程玉强, 等.航天器推进系统水击及其抑制方法[J].航空动力学报, 2012, 27(9): 2028-2034.
[4] 林景松, 王平阳, 高红, 等.液体火箭发动机关机水击的数值模拟[J].上海航天, 2008, 25(3): 53-57.
[5] 陈辉.三次样条小波有限元法求解水锤方程[J].哈尔滨师范大学自然科学学报, 2012, 28(1): 1-2.
[6] 张青斌, 王昱, 丰志伟, 等.基于区间样条小波的太阳帆轨迹优化算法[J].宇航学报, 2011, 32(12): 2484-2490.
[7] CAI W, WANG J Z.Adaptive multiresolution collocation methods for initial-boundary value problems of nonlinear PDEs[J].SIAM Journal on Numerical Analysis, 1996, 33(3): 937-970.
[8] VASILYEV O V, PAOLUCCI S.A fast adaptive wavelet collocation algorithm formultidimensional PDEs[J].Journal of Computational Physics, 1997, 138(1): 16-56.
[9] REGELE J D, KASSOY D R, VASILYEV O V.Numerical Modeling of Acoustic Timescale Detonation Initiation:AIAA 2008-1037[R].USA:AIAA,2008.
[10] REGELE J D, VASILYEV O V.An adaptive wavelet-collocation method for shock computations[J].International Journal of Computational Fluid Dynamics, 2009, 23(7): 503-518.
[11] 赵勇.小波数值方法在船舶流体力学中的若干应用[D].大连: 大连理工大学, 2011.
[12] 唐玲艳, 宋松和.求解双曲型守恒律方程的一类自适应多分辨方法[J].计算物理, 2014, 31(2): 155-164.
[13] REGELE J D, KASSOY D R, VEZOLAINEN A, et al.Purely gasdynamic multidimentioanal indirect detonation initiation using localized acoustic timescale power deposition:AIAA 2013-1172[R].USA:AIAA,2013.
[14] REGELE J D, KASSOY D R, ASLANI M, et al.Evolution of detonation formation initiated by a spatially distributed, transient energy source[J].Journal of Fluid Mechanics, 2016, 802: 305-332.
[15] GE X, VASILYEV O V, DE STEFANO G, et al.Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes computations of wall-bounded internal and external compressible turbulent flows[C]//2018 AIAA Aerospace Sciences Meeting.Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018.
[16] GE X, VASILYEV O V, HUSSAINI M Y.Wavelet-based delayed detached eddy simulation method for compressible wall bounded turbulent flow modeling[C]//2018 AIAA Aerospace Sciences Meeting.Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018.
相似文献/References:
[1]张峥岳,康乃全.轨姿控液体火箭发动机水击仿真模拟[J].火箭推进,2012,38(03):12.
ZHANG Zheng-yue,KANG Nai-quan.Simulation of water hammer in liquid rocket engine of orbit and attitude control system[J].Journal of Rocket Propulsion,2012,38(05):12.
备注/Memo
收稿日期:2018-07-13; 修回日期:2018-12-10基金项目:国家自然科学基金(11602186)作者简介:许志宇(1989—),男,博士,研究领域为液体火箭发动机调节与控制