航天推进技术研究院主办
ZHANG Meng,SUN Bing.Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness[J].Journal of Rocket Propulsion,2020,46(01):20-27.
人工粗糙度对矩形弯曲管道流动与传热数值模拟
- Title:
- Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness
- Keywords:
- regenerative cooling; artificial roughness; secondary flow; heat transfer enhancement; convective heat transfer
- 分类号:
- V434.14文献标识码:A 文章编号:1672-9374(2020)01-0020-08
- 摘要:
- 人工粗糙度作为一种局部强化换热技术,对提高再生冷却效率有重要意义。为了研究人工粗糙度对矩形冷却通道三维流动与传热特性的影响,以及在弯曲段与二次流的耦合作用,对有人工粗糙度的三维弯曲矩形通道进行了建模,并应用Fluent软件进行了数值仿真计算,采用了能够有效准确地求解受强曲率影响的管道内及近壁区域湍流流动的RNG k-䥺SymboleA@湍流模型。结果表明:在冷却通道底面添加人工粗糙度会使底部流动受到干扰进而导致流速中心上移,因此在弯曲段,有人工粗糙度的冷却通道中所产生迪恩涡的范围相对较小且距离底面较远,而随着二次流的产生,流速中心会向底部移动,使得该处的换热得到改善,整体对流传热系数上升; 当入口质量流量分别为0.1 kg/s,0.2 kg/s,0.3 kg/s时,有人工粗糙度工况下弯曲段加热面平均对流传热系数分别增加了11.86%,13.11%,16.14%,表明添加人工粗糙度可以显著提高换热,且随着入口质量流量的增加其对换热的提高作用也变得越来越明显。
- Abstract:
- As a local heat transfer enhancement technology, artificial roughness is of great significance to improve the regenerative cooling efficiency. In order to study the influence of artificial roughness on the three-dimensional flow and heat transfer characteristics of the rectangular cooling channel, and the coupling effect with the secondary flow in the curved section, a three-dimensional curved rectangular channel with artificial roughness was modeled and simulated by Fluent software in this paper. RNG k-䥺SymboleA@ turbulence model was used to effectively and accurately solve the turbulent flow in the pipeline and near-wall flow affected by the strong curvature. The results show that adding artificial roughness to the bottom of the cooling channel will disturb the bottom flow and cause the velocity center to move up. Therefore, in the curved section, the range of Dean vortices generated in the cooling passage with artificial roughness is relatively small and far from the bottom. With the generation of the secondary flow, the flow velocity center moves to the bottom, so that the heat transfer is enhanced and the overall convective heat transfer coefficient is increased. When the inlet mass flow rate is 0.1 kg/s, 0.2 kg/s and 0.3 kg/s, the average convective heat transfer coefficients of the heating surface in the curved section under artificial roughness conditions increase by 11.86%, 13.11% and 16.14%, respectively. It is shown that the heat transfer can be improved obviously by adding artificial roughness, and its effect on heat transfer becomes more and more obvious with the increase of mass flow rate.
参考文献/References:
[1] 刘国斌.液体火箭发动机原理[M].北京:宇航出版社,1993.
[2] 蔡国飙.液体火箭发动机设计[M].北京:北京航空航天大学出版社, 2011.
[3] 章思龙, 秦江, 周伟星, 等.高超声速推进再生冷却研究综述[J].推进技术, 2018, 39(10):2177-2190.
[4] 陈建华, 杨宝庆, 周立新, 等.人为粗糙度强化换热机理分析及效果评估[J].火箭推进, 2004, 30(4):1-5.CHEN J H, YANG B Q, ZHOU L X, et al.The mechanism and effect of artificial roughness on heat transfer enhancement[J].Journal of Rocket Propulsion, 2004, 30(4):1-5.
[5] HOSSAIN J, TRAN L V, CARPENTER C, et al.Numerical study of enhancement of regenerative cooling using ribs[R]. AIAA 2013-3996.
[6] XU K K, TANG L J, MENG H.Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes[J].International Journal of Heat and Mass Transfer, 2015, 84:346-358.
[7] KAMALI R, BINESH A R.The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces[J].International Communications in Heat and Mass Transfer, 2008, 35(8):1032-1040.
[8] NARAGHI M, DASSONVILLE R.Improved correlations for curvature effects in cooling channels of rocket engines[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Atlanta, Georgia.Reston, Virigina:AIAA, 2012.
[9] VALENTIN J, NARAGHI M.Effects cooling channel curvature on coolant secondary flow and heat transfer[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Nashville, TN.Reston, Virigina:AIAA, 2010.
[10] PIZZARELLI M.Effectiveness of spalart-allmaras turbulence model in analysis of curved cooling channels[J].AIAA Journal, 2013, 51(9):2158-2167.
[11] PIZZARELLI M, NASUTI F, ONOFRI M.CFD analysis of curved cooling channel flow and heat transfer in rocket engines[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Nashville, TN.Reston, Virigina:AIAA, 2010.
[12] 康玉东, 孙冰.燃气非平衡流再生冷却流动传热数值模拟[J].推进技术, 2011, 32(1):119-124.
[13] 丁珏, 翁培奋.三种湍流模式数值模拟直角弯管内三维分离流动的比较[J].计算物理, 2003, 20(5):386-390.
[14] 赵金辉, 王志国, 晋世强.不同曲率直径比下90°弯管内部流场分析[J].轻工科技, 2014, 30(8):64-65.
[15] 孙业志, 胡寿根, 赵军, 等.不同雷诺数下90°弯管内流动特性的数值研究[J].上海理工大学学报, 2010, 32(6):525-529.
[16] 湛含辉, 朱辉, 陈津端, 等.90°弯管内二次流(迪恩涡)的数值模拟[J].锅炉技术, 2010, 41(4):1-5.
相似文献/References:
[1]孙 鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(02):32.
SUN Xin,YANG Cheng-hu.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(01):32.
[2]徐辉,易琪,钟徐,等.1 0kN双向摇摆再生冷却发动机技术研究[J].火箭推进,2009,35(05):8.
Xu Hui,Yi Qi,Zhong Xu,et al.Research on 1 0kN gimbaled regeneratively cooled engine[J].Journal of Rocket Propulsion,2009,35(01):8.
[3]方磊.刘伟.姿控用再生冷却推力室传热特性研究[J].火箭推进,2008,34(06):6.
Fang Lei,Liu Wei.Research on heat transf.er characteristic of regeneratiVely
cooled attitude control engine thmst chamber[J].Journal of Rocket Propulsion,2008,34(01):6.
[4]栾叶君,孙纪国,田昌义,等.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(05):17.
Luan Yejun,Sun Jiguo,Tian Changyi,et al.Failure analysis on regeneratively cooled wall of a hydrogen-oxygen thrust chamber[J].Journal of Rocket Propulsion,2006,32(01):17.
[5]徐辉,林庆国,汪允武,等.挤压式低室压推力室再生冷却问题[J].火箭推进,2006,32(06):12.
Xu Hui,Lin Qingguo,Wang Yunwu,et al.Regenerative cooling of the pressure-fed thruster with low-pressure chamber[J].Journal of Rocket Propulsion,2006,32(01):12.
[6]许晓勇,赵世红,王召.轻质钛合金喷管在氢氧发动机上的应用研究[J].火箭推进,2016,42(04):1.
XU Xiaoyong,ZHAO Shihong,WANG Zhao.Application of lightweight titanium alloy nozzle in LOX-LH2 rocket engine[J].Journal of Rocket Propulsion,2016,42(01):1.
[7]金烜,沈赤兵,吴先宇,等.超燃冲压发动机再生冷却技术研究进展[J].火箭推进,2016,42(05):66.[doi:10.3969/j.issn.1672-9374.2016.05.012]
JIN Xuan,SHEN Chibing,WU Xianyu,et al.Progress of regenerative cooling technology for scramjet[J].Journal of Rocket Propulsion,2016,42(01):66.[doi:10.3969/j.issn.1672-9374.2016.05.012]
[8]刘朝晖,陈雪娇,蒋榕培.超高参数火箭煤油在小通道圆管内的流动换热特性[J].火箭推进,2024,50(05):114.[doi:10.3969/j.issn.1672-9374.2024.05.011]
LIU Zhaohui,CHEN Xuejiao,JIANG Rongpei.Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions[J].Journal of Rocket Propulsion,2024,50(01):114.[doi:10.3969/j.issn.1672-9374.2024.05.011]
[9]张 萌,孙 冰.液氧/甲烷发动机推力室肋强化换热技术数值研究[J].火箭推进,2021,47(02):19.
ZHANG Meng,SUN Bing.Numerical study on enhanced heat transfer technology ofLOX/CH4engine chamber with ribs[J].Journal of Rocket Propulsion,2021,47(01):19.
备注/Memo
收稿日期:2019-04-13; 修回日期:2019-05-24基金项目:国家自然科学基金(11602186)作者简介:张萌(1993—),男,博士,研究领域为液体火箭发动机热防护仿真