航天推进技术研究院主办
HAN Changlin,TIAN Yuan.Study on combustion and heat transfer characteristics of a scaled trust chamber[J].Journal of Rocket Propulsion,2020,46(01):28-34.
某缩尺推力室燃烧和传热特性研究
- Title:
- Study on combustion and heat transfer characteristics of a scaled trust chamber
- 分类号:
- V434.13文献标识码:A 文章编号:1672-9374(2020)01-0028-07
- 摘要:
- 为了研究冷却剂的流动方向和推进剂的质量流量对推力室燃烧和传热过程带来的影响,以某型氢氧火箭发动机的推力室缩比试验件为研究对象,对推力室的燃烧和传热过程进行了数值仿真。改变冷却剂的流动方向,最高壁面温度相差1.04%,最高壁面热流密度相差0.544%,冷却剂温升相差0.233%,出口压力相差3.803%,分析发现,改变冷却剂的流动方向,对推力室内部的燃烧过程和壁面传热效率影响很小,冷却剂的流动方向会影响壁面温度分布。推进剂质量流量提升22.29%,室压提升22.17%,燃烧效率降低0.55%,最高壁温提升9.16%,最高热流密度提升17.48%,冷却剂温升提高13.05%,分析发现,提升推进剂质量流量会导致推力室壁面温度和冷却剂温升的提高,由于缩比发动机反应空间小燃烧不够充分,提升推进剂质量流量会使燃烧效率有所下降。
- Abstract:
- To study the influence of mass flow rate of propellant and the flow direction of coolant on combustion and heat transfer process of the trust chamber, the scaled thrust chamber of a certain type of hydrogen-oxygen rocket engine was taken as the research object, and its combustion and heat transfer process was simulated. When the coolant flow direction was changed, the maximum wall temperature varied by 1.04%, the maximum wall heat flux varied by 0.544%, the temperature rise of coolant varied by 0.233% and the coolant outlet pressure varied by 3.803%. The research shows that the direction of coolant flow has little effect on the combustion and heat transfer processes, and it affects the wall temperature distribution. When the mass flow rate of propellant increased by 22.29%, the chamber pressure increased by 22.17%, the combustion efficiency decreased by 0.55%, the maximum wall temperature increased by 9.16%, the maximum heat flux increased by 17.48% and the temperature rise of coolant increased by 13.05%. The improvement of propellant mass flow rate will lead to the increase of the wall temperature and coolant temperature rise. Because the combustion is not sufficient due to the small reaction space in the scaled engine, improving the coolant mass flow rate will reduce the combustion efficiency.
参考文献/References:
[1] 王振国.液体火箭发动机燃烧过程建模与数值仿真[M].北京:国防工业出版社, 2012.
[2] 林庆国, 周进.小推力液体火箭发动机燃烧与传热数值仿真研究[J].国防科技大学学报, 2012, 34(4):13-17.
[3] FREY M,AICHNER T, GORGEN J,et al.Modeling of rocket combustion devices [R].AIAA 2010-4329.
[4] RICCIUS J, ZAMETAEV E.Stationary and transient thermal analyses of cryogenic liquid rocket combustion chamber walls[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Indianapolis, Indiana.Reston, Virigina:AIAA, 2002.
[5] BUCCHI A, BRUNO C, CONGIUNTI A.Transpiration cooling performance in LOX/methane liquid-fuel rocket engines[J].Journal of Spacecraft and Rockets, 2005, 42(3):476-486.
[6] WANG T S, LUONG V.Hot-gas-side and coolant-side heat transfer in liquid rocket engine combustors[J].Journal of Thermophysics and Heat Transfer, 1994, 8(3):524-530.
[7] NEGISHI H, KUMAKAWA A, YAMANISHI N, et al.Heat transfer simulations in liquid rocket engine subscale thrust Chambers[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Hartford, CT.Reston, Virigina:AIAA, 2008.
[8] KNAB O, FREY M, G?RGEN J, et al.Progress in combustion and heat transfer modelling in rocket thrust chamber applied engineering[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Denver, Colorado.Reston, Virigina:AIAA, 2009.
[9] SHARMA A,AGARWAL D K,PISHARADY J C,et al.Numerical analysis of combustion and regenerative cooling in LOX-methane rocket engine[C].Proceedings of the International Astronautical Congress.2017.
[10] 刘红珍, 田原, 孙纪国.液氧甲烷单喷嘴燃烧性能数值仿真研究[J].火箭推进, 2014, 40(1):56-59.LIU H Z, TIAN Y, SUN J G.Numerical simulation of combustion performance of LOX/methane single nozzle[J].Journal of Rocket Propulsion, 2014, 40(1):56-59.
[11] MARCHI C H, LAROCA F, DA SILVA A F C, et al.Numerical solutions of flows in rocket engines with regenerative cooling[J].Numerical Heat Transfer, Part A:Applications, 2004, 45(7):699-717.
[12] 冯文澜,张远君.液体火箭发动机原理[M].北京:北京航空航天大学出版社,1991.
[13] 姜培学, 任泽霈, 张左匆, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅰ)数理模型[J]. 推进技术, 1999, 20(3): 1-4.
[14] 姜培学, 任泽霈, 陈旭扬, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅱ)数值方法与计算结果[J]. 推进技术, 1999, 20(4): 17-21.
[15] 周立新, 张会强, 雷凡培, 等. 人为粗糙度强化传热机理数值分析[J]. 火箭推进, 2004, 30(1): 7-10.ZHOU L X, ZHANG H Q, LEI F P,et al. Numerical analysis of heat transfer enhancement for a cooling channel flow with artificial roughness[J]. Journal of Rocket Propulsion, 2004, 30(1): 7-10.
[16] 韩振兴,林文,张远君,等.液体火箭发动机铣槽推力室三维壁温分布计算[J].航空动力学报,1996,11(2):145-148.
[17] 李军伟,刘宇.三维数值模拟再生冷却喷管的换热[J].推进技术,2005,26(2):111-115.
[18] 李军伟, 刘宇.一种计算再生冷却推力室温度场的方法[J].航空动力学报, 2004, 19(4):550-556.
[19] VáZQUEZ M S, RODRíGUEZ W V, ISSA R.Effects of ridged walls on the heat transfer in a heated square duct[J].International Journal of Heat and Mass Transfer, 2005, 48(10):2050-2063.
[20] NEGISHI H, DAIMON Y, KAWASHIMA H.Flowfield and heat transfer characteristics in the LE-X expander bleed cycle combustion chamber[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Cleveland, OH.Reston, Virginia:AIAA, 2014.
[21] 汪小卫, 金平, 蔡国飙.一种单喷嘴推力室燃烧内流场的方法[J].北京航空航天大学学报, 2009, 35(9):1095-1099.
[22] 任汉芬,刘国球,方照奎,等.液体火箭发动机原理[M].北京:中国宇航出版社,1993.
相似文献/References:
[1]霍世慧,袁军社,徐学军,等.双推力室机架快速优化设计方法研究[J].火箭推进,2015,41(04):55.
HUO Shihui,YUAN Junshe,XU Xuejun,et al.A rapid optimization design method for frame structure
of double thrust chambers[J].Journal of Rocket Propulsion,2015,41(01):55.
[2]沈传兵,苏 杭,朱子勇.基于PLC和WinCC的火箭发动机热真空试验控制系统[J].火箭推进,2015,41(03):93.
SHEN Chuan-bing,SU Hang,ZHU Zi-yong.Control system for liquid rocket engine heat-vacuum
test based on PLC and WinCC[J].Journal of Rocket Propulsion,2015,41(01):93.
[3]刘万龙,牛向楠,李全令,等.一种姿轨控发动机地面试验控制系统设计[J].火箭推进,2015,41(02):114.
LIU Wan-long,NIU Xiang-nan,LI Quan-ling,et al.Design of a ground test control system for attitude
and orbital control engine[J].Journal of Rocket Propulsion,2015,41(01):114.
[4]段文浩,于 涛,杨 莹.辐射式热流测量系统及其应用[J].火箭推进,2014,40(01):85.
DUAN Wen-hao,YU Tao,YANG Ying.Radiant heat flux measuring system and its application[J].Journal of Rocket Propulsion,2014,40(01):85.
[5]朱子环,耿卫国,管 理,等.某型号大推力火箭发动机试验推力测量不确定度评定[J].火箭推进,2012,38(05):81.
ZHU Zi-huan,GENG Wei-guo,GUAN Li,et al.Assessment of thrust measurement uncertainty for test of large thrust rocket engine[J].Journal of Rocket Propulsion,2012,38(01):81.
[6]周奎,吴伟亮,张玫宝.火箭发动机喷雾均匀性数值分析[J].火箭推进,2010,36(02):26.
Zhou Kui,Wu Weiliang,Zhang Meibao.Numerical analysis on uniformity of spray in rocket engines[J].Journal of Rocket Propulsion,2010,36(01):26.
[7]张涛,唐虎,周江平,等.可贮存推进剂泵压式液体火箭发动机多次起动系统研究[J].火箭推进,2010,36(03):15.
Study on the multi-start system of turbopump-fed rocket engine with storable propellants[J].Journal of Rocket Propulsion,2010,36(01):15.
[8]刘小勇,李君,周云端.液体火箭发动机声振环境试验及统计能量分析研究[J].火箭推进,2010,36(03):49.
Liu Xiaoyong,Li Jun,Zhou Yunduan.Measurement and analysis of noise field of rocket engine based on statistical energy analysis[J].Journal of Rocket Propulsion,2010,36(01):49.
[9]刘永兴,王 魁,曹再勇.RBCC推进系统主火箭发动机气氧/煤油推力室研究[J].火箭推进,2009,35(06):23.
Liu Yongxing,Wang Kui,Cao Zaiyong.Investigation of GO2/kerosene thrust chamber of the main rocket engine for the RBCC propulsion system[J].Journal of Rocket Propulsion,2009,35(01):23.
[10]袁晓峰,许化龙,徐志高.液体火箭发动机诊断知识挖掘系统设计[J].火箭推进,2008,34(03):44.
Yuan Xiaofeng,Xu Hualong,Xu Zhigao.Design of diagnostic knowledge mining system for liquid
propellant rocket engine[J].Journal of Rocket Propulsion,2008,34(01):44.
备注/Memo
收稿日期:2019-03-27; 修回日期:2019-05-10基金项目:民用航天技术预先研究项目(D010401)作者简介:韩长霖(1993—),男,硕士,研究领域为液体火箭发动机设计