航天推进技术研究院主办
XIAO Li,BAI Xiao,LI Qinglian,et al.Comparative study on atomization characteristics between 3D printing and machined injectors[J].Journal of Rocket Propulsion,2020,46(01):35-43.
3D打印与机械加工喷嘴的雾化特性对比研究
- Title:
- Comparative study on atomization characteristics between 3D printing and machined injectors
- 分类号:
- V435文献标识码:A 文章编号:1672-9374(2020)01-0035-09
- 摘要:
- 为清楚阐明3D打印技术是否可应用于加工火箭发动机的关键部件——喷嘴,及加工方式会对推进剂的流动雾化产生何种影响,对相同结构的机械加工喷嘴与3D打印喷嘴的喷雾特性进行了冷态试验对比研究。基于背景光成像技术采用高速相机获得瞬态的喷雾图像,以及激光散射技术采用马尔文测量液滴粒径尺寸分布。研究发现:机械加工喷嘴同轴度普遍较差,喷嘴重复性较低,喷雾存在偏斜、分散等喷雾空间分布不均问题; 3D打印喷嘴表面粗糙度较高,使得喷嘴流量系数比设计值低3%左右; 在喷嘴同轴度较好的前提下,加工方式对雾化锥角及雾化粒径影响较小。
- Abstract:
- In order to clarify whether 3D printing technology can be applied to machine the injector which is a critical component of the rocket engine, and how the processing method affects the flow and atomization characteristics, the cold spray experiments were conducted using the 3D printing and machined injectors with the same structure. A back-lighting photography technique has been employed to capture the instantaneous spray images with a high speed camera. The droplet size distribution was measured using Malvern based on the laser scattering technique. The results show that the coaxiality and repeatability of the machined injectors is generally poor, and the spray has the problem of uneven spatial distribution such as deflection and dispersion. While for the 3D printing injectors, the discharge coefficient is lower than the designed value by 3% due to its higher roughness. On the premise of the better injector coaxiality, the processing method has less influence on the spray angle and diameter.
参考文献/References:
[1] 曹明元.3D打印技术概论[M].北京:机械工业出版社, 2016.
[2] 杨继全, 冯春梅.3D打印:面向未来的制造技术[M].北京:化学工业出版社, 2014.
[3] 郎代兵.3D打印:从技术到商业实现[M].北京:化学工业出版社,2017.
[4] 张学军, 唐思熠, 肇恒跃, 等.3D打印技术研究现状和关键技术[J].材料工程, 2016, 44(2):122-128.
[5] 谭立忠, 方芳.3D打印技术及其在航空航天领域的应用[J].战术导弹技术, 2016(4):1-7.
[6] 吕鉴涛.3D打印原理、技术与应用[M].北京:人民邮电出版社, 2017.
[7] 康忠涛.气液同轴离心式喷嘴非定常雾化机理和燃烧特性研究[D].长沙:国防科技大学, 2016.
[8] 沈赤兵, 李清廉, 罗世彬, 等.三组元火箭发动机推力室试验研究[J].火箭推进, 2006, 32(5):1-6.SHEN C B, LI Q L, LUO S B, et al.Experimental research on the thrust chamber of tripropellant rocket engine[J].Journal of Rocket Propulsion, 2006, 32(5):1-6.
[9] 段增斌.三组元喷嘴冷流试验研究[J].火箭推进, 2003, 29(4):18-23.DUAN Z B.Experimental investigation of tripropellant injector[J].Journal of Rocket Propulsation, 2003, 29(4):18-23.
[10] SIMMONS M J H, HANRATTY T J.Droplet size measurements in horizontal annular gas-liquid flow[J].International Journal of Multiphase Flow, 2001, 27(5):861-883.
[11] DAVIAULT S G, RAMADAN O B, MATIDA E A, et al.Atomization performance of petroleum coke and coal water slurries from a twin fluid atomizer[J].Fuel, 2012, 98:183-193.
[12] CHENG P, LI Q L, XU S, et al.On the prediction of spray angle of liquid-liquid pintle injectors[J].Acta Astronautica, 2017, 138:145-151.
[13] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
[14] 王振国.液体火箭发动机燃烧过程建模与数值仿真[M].北京:国防工业出版社, 2012.
[15] HARDALUPAS Y, WHITELAW J H.Characteristics of sprays produced by coaxial airblast atomizers[J].Journal of Propulsion and Power, 1994, 10(4):453-460.
相似文献/References:
[1]郭 叶,赵 飞.金属—氟塑料复合阀芯V形槽工艺改进[J].火箭推进,2020,46(06):103.
GUO Ye,ZHAO Fei.Study on improvement of V-groove process for
metal-fluoroplastic composite valve spool[J].Journal of Rocket Propulsion,2020,46(01):103.
备注/Memo
收稿日期:2019-01-04; 修回日期:2019-04-09基金项目:国家自然科学基金(11472303; 11402298); 教育部新世纪优秀人才支持计划(NCET-13-0156); 国家基础研究重大专项(613239)作者简介:肖礼(1990—),男,工程师,研究领域为液体火箭发动机