航天推进技术研究院主办
GONG Yanbo,ZHENG Dayong,WANG Weibin.Performance sensitivity analysis of liquid oxygen/methane rocket engine[J].Journal of Rocket Propulsion,2020,46(01):59-68.
液氧/甲烷火箭发动机性能敏感性分析
- Title:
- Performance sensitivity analysis of liquid oxygen/methane rocket engine
- 分类号:
- V434文献标识码:A 文章编号:1672-9374(2020)01-0059-10
- 摘要:
- 为了弥补极差分析法在发动机性能敏感性分析方面的不足,提高低温火箭发动机性能敏感性分析的准确度,引入了方差分析法,以某型液氧/甲烷发动机为例开展了性能敏感性分析,并通过F检验得到了每个干扰因素对发动机性能影响的显著性指标,与传统的极差分析法相比,提高了液体火箭发动机性能敏感性分析的准确度。结果表明:发动机推力和混合比对同一因素的敏感性存在差别,其中对发动机推力和混合比的影响最大的是涡轮泵效率,均呈现高度显著; 紧随其后,对推力影响显著性最高的是副系统流阻特性,而对混合比影响最高的则是主系统流阻特性。研究表明,方差分析法可以有效提高敏感性分析的准确度,既为该型发动机的研制提供了理论支持,也为其他发动机的敏感性分析提供了新的参考。
- Abstract:
- In order to make up for the deficiency of range analysis method in engine performance sensitivity analysis and improve the accuracy of performance sensitivity analysis of cryogenic rocket engine, variance analysis method was introduced in this paper.Taking a liquid oxygen/methane engine for example, performance sensitivity analysis was carried out, and the significance index of each interference factor on engine performance was obtained through F test.Compared with the traditional range analysis method, the variance analysis method improves the accuracy of performance sensitivity analysis of liquid rocket engine.The results show that the sensitivity of engine thrust and mixing ratio to the same factor is different, among which the turbopump efficiency has the greatest influence on both engine thrust and mixing ratio.The second most significant impact on thrust is the flow resistance characteristics of the subsystem, while the second most significant impact on mixing ratio is the flow resistance characteristics of the main system.The results of this study show that ANOVA can effectively improve the accuracy of sensitivity analysis, which not only provides theoretical support for the development of this type of engine, but also provides a new reference for sensitivity analysis of other engines.
参考文献/References:
[1] 郑大勇, 颜勇, 张卫红.氢氧火箭发动机性能敏感性分析[J].火箭推进, 2011, 37(4):18-23.ZHENG D Y, YAN Y, ZHANG W H.Analysis for performance parameter sensitivity of hydrogen/oxygen rocket engine[J].Journal of Rocket Propulsion, 2011, 37(4):18-23.
[2] 李松, 陈钒, 唐英, 等.刚构桥基于敏感性原理的参数敏感度分析[J].土木工程与管理学报, 2008, 25(4):123-125.
[3] 李强, 王菊金.补燃循环过氧化氢/煤油发动机性能敏感性分析[J].火箭推进, 2013, 39(5):35-40.LI Q, WANG J J.Analysis of performance sensitivity of hydrogen peroxide/kerosene staged-combustion engine[J].Journal of Rocket Propulsion, 2013, 39(5):35-40.
[4] 张晟, 金平, 蔡国飙.推力室冷却通道结构可靠性仿真及参数敏感性分析[J].航空动力学报, 2018, 33(11):100-108.
[5] 薛帅杰, 刘红军, 洪流, 等.厚液膜敞口型离心喷嘴动力学特性试验[J].航空学报, 2018, 39(12):166-176.
[6] 侯金丽, 金平, 蔡国飙.基于敏感性分析的氧/甲烷燃烧反应简化机理[J].航空动力学报, 2012, 27(7):1549-1554.
[7] 李元启, 刘红军, 徐浩海, 等.液体火箭发动机动态特性仿真技术研究进展[J].火箭推进, 2017, 43(5):1-6.LI Y Q, LIU H J, XU H H, et al.Research progress on numerical simulation technology of liquid rocket engine dynamic characteristics[J].Journal of Rocket Propulsion, 2017, 43(5):1-6.
[8] 陈杰, 王克昌, 陈启智.液氧/煤油推进剂液体火箭发动机循环动力平衡分析[J].国防科技大学学报, 1992, 14(2):53-58.
[9] 吕超力.Levy型索穹顶的敏感性分析及结构改进[D].杭州:浙江大学, 2008.
[10] 赵国华.电力行业二氧化硫减排因素的敏感性分析与对策研究[D].南京:南京信息工程大学, 2008.
[11] 陈魁.试验设计与分析[M].北京:清华大学出版社, 1996.
[12] 杨子胥.正交表的构造[M].济南:山东人民出版社, 1978.
[13] MANGALATHU S, JEON J S, PADGETT J E, et al.Performance-based grouping methods of bridge classes for regional seismic risk assessment:application of ANOVA, ANCOVA, and non-parametric approaches[J].Earthquake Engineering & Structural Dynamics, 2017, 46(14):2587-2602.
[14] 金玉玲, 孙浩.基于ANOVA方差的生态旅游者对景区管理模式的态度分析[J].宝鸡文理学院学报(社会科学版), 2019(3):38-43.
[15] 戴金辉, 韩存.双因素方差分析方法的比较[J].统计与决策, 2018(4):30-33.
[16] 李锦环.怎样用方差分析方法分析试验数据[J].吉林农业, 2012(2):60.
[17] 杨小勇.方差分析法浅析:单因素的方差分析[J].实验科学与技术, 2013, 11(1):41-43.
[18] 郑敦兵,张永敬,肖刚.液体火箭发动机性能参数的数字仿真[J].推进技术,1996(3):16-20.
[19] 张黎辉, 凌桂龙, 段娜, 等.基于遗传算法的液体火箭发动机参数优化[J].航空动力学报, 2008, 23(5):916-920.
[20] 郭克芳, 李志.液体火箭发动机静态特性的非线性分析[J].宇航学报, 1988, 9(4):44-49.
相似文献/References:
[1]郑大勇,颜 勇,张卫红.氢氧火箭发动机性能敏感性分析[J].火箭推进,2011,37(04):18.
ZHENG Da-yong,YAN Yong,ZHANG Wei-hong.Analysis for performance parameter sensitivity of hydrogen/oxygen rocket engine[J].Journal of Rocket Propulsion,2011,37(01):18.
[2]张 明,孙 冰.液氧/甲烷发动机变截面冷却通道传热数值研究[J].火箭推进,2019,45(02):9.
ZHANG Ming,SUN Bing.Numerical study of heat transfer in variable cross-section
cooling channels of LOX/methane rocket engines[J].Journal of Rocket Propulsion,2019,45(01):9.
[3]刘开磊,王 垚,王 纯.火箭动力飞行器推力线快速测算方法[J].火箭推进,2020,46(03):62.
LIU Kailei,WANG Yao,WANG Chun.The fast calculation method for thrust line of rocket-powered aircraft[J].Journal of Rocket Propulsion,2020,46(01):62.
[4]马晓丹,周晨初,张晨曦.火箭发动机向导式仿真流程构建[J].火箭推进,2020,46(05):80.
MA Xiaodan,ZHOU Chenchu,ZHANG Chenxi.Construction of rocket engine wizard simulation process[J].Journal of Rocket Propulsion,2020,46(01):80.
备注/Memo
收稿日期:2019-03-28; 修回日期:2019-05-09作者简介:巩岩博(1994—),男,硕士,研究领域为液体火箭发动机系统仿真