航天推进技术研究院主办
LI Huimin,LI Xiangyang,JIANG Jianyuan,et al.Influence of outlet parameters of inducer on performance of high speed centrifugal pump[J].Journal of Rocket Propulsion,2020,46(01):69-75.
诱导轮出口参数对高速离心泵性能的影响
- Title:
- Influence of outlet parameters of inducer on performance of high speed centrifugal pump
- Keywords:
- liquid rocket engine; the inducer-centrifugal pump; variable-pitch inducer; cavitation performance
- 分类号:
- V434.2文献标识码:A 文章编号:1672-9374(2020)01-0069-07
- 摘要:
- 某型号液体火箭发动机用高速诱导轮离心泵存在抗汽蚀性能偏低的问题,而液体火箭发动机对泵的抗汽蚀性能有特别严格的要求,其直接影响发动机的性能和可靠性。为获得更高的效率,按照常规泵设计经验选取较大的诱导轮出口角,而理论分析此时诱导轮和离心轮的能量匹配不是最佳,不能获得较好的汽蚀性能。经过理论分析,提出降低诱导轮出口角的改进方案,并对诱导轮离心泵流场进行数值模拟,并在试验室进行了试验验证。仿真及试验表明在相同叶轮外形尺寸条件下,提出适当降低诱导轮出口参数的设计方法,虽然泵的扬程和效率略有降低,但泵的抗汽蚀性能得到大幅提高,该方法提高泵的抗汽蚀性能是可行的。
- Abstract:
- A high speed inducer-centrifugal pump of specific liquid propellant rocket engine has the problem of low cavitation performance, and the liquid propellant rocket engine has special strict requirements on the pump cavitation performance, which directly affects the performance and reliability of the engine.In order to obtain higher efficiency, the larger outlet angle of the inducer was selected according to the conventional pump design experience.However, at this point,the energy matching between inducer and centrifugal impeller was not the best, so the better cavitation performance could not be obtained.After the theoretical analysis, an improved scheme to reduce the outlet angle of the inducer was proposed, and the flow field of the inducer-centrifugal pump was simulated numerically.The simulation and test results show that the pump’s cavitaion performance is greatly improved when the outlet parameters of the inducer were adjusted according to the design method, although the pump’s head and efficiency are slightly reduced, so it is feasible to improve the pump’s cavitation performance by using the design method.
参考文献/References:
[1] JAKOBSEN J K.Liquid rocket engine turbopump inducers[R].NASA SP 1971-8052.
[2] KENJIRO K,HITOSHI Y,YOSHINOBU T.Performance of LE-7 LOX pump inducer[C]// 18th International Symposium on Space Technology and Science.Tokyo,Japan:AGNE Publishing Inc.1992.
[3] BISSEL W R,DOULASS H W,SOBIN A J. Turbopump systems for liquid rocket engines[R]. NASA SP 1974-8107.
[4] ACOSTA A J,TSUJIMOTO Y,YOSHIDA Y,et al. Effects of leading edge sweep on the cavitating characteristics of inducer pumps[J]. International Journal of Rotating Machinery,2001,7(6): 397-404.
[5] BAKIR F,KOUIDRI S,NOGUERA R,et al. Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime[J]. Journal of Fluids Engineering,2003,125(2): 293-301.
[6] CERVONE A,PACE G,TORRE L,et al. Effects of the leading edge shape on the performance of an axial three bladed inducer[C]//14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery(ISROMAC14). Honolulu:HI,2012.
[7] COUTIER-DELGOSHA O,CAIGNAERT G,BOIS G,et al. Influence of the blade number on inducer cavitating behavior[J]. Journal of Fluids Engineering,2012,134(8): DOI:10.1115/1.4006693.
[8] HONG S S,KIM J S,CHOI C H,et al. Effect of tip clearance on the cavitation performance of a turbopump inducer[J]. Journal of Propulsion and Power,2006,22(1): 174-179.
[9] LAKSHMINARAYANA B. Analytical and experimental st udy of flow phenomena in noncavitating rocket pump inducers. NASA 1981-3471.
[10] 孙建, 孔繁余, 焦其斌. 变螺距诱导轮的设计步骤及参数选择[J]. 流体机械, 2006, 34(4): 19-22.
[11] 陈晖, 张恩昭, 谭永华, 等. 高速平板诱导轮的结构设计与分析[J]. 火箭推进, 2009, 35(3): 1-5.CHEN H, ZHANG E Z, TAN Y H, et al. Geometry design and analysis of the high-speed rotational plate inducer[J]. Journal of Rocket Propulsion, 2009, 35(3): 1-5.
[12] 庄宿国,刘厚林,俞志君,等.诱导轮水力设计及其CAD软件开发[J].流体机械,2011,39(7):50-54.
[13] 孔繁余,黄建军,吕毅,等.离心泵变螺距诱导轮的开发[J].排灌机械,2008,26(3):10-14.
[14] 王剑,胡敬宁,何玉杰,等. 高速离心泵诱导轮的设计[J]. 流体机械,2005,33(5):20-23.
[15] 朱祖超,王乐勤.变螺距诱导轮结构设计与理论分析[J].浙江大学学报(自然科学版),1998,32(2):196-200.
[16] MEJRI I,BAKIR F,REY R,et al.Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers[J].Journal of Fluids Engineering,2006,128(6):1308-1323.
[17] 宋沛原,李家文,唐飞.轮毂形状对诱导轮性能的影响[J].火箭推进,2012,38(2):38-43.SONG P Y,LI J W,TANG F.Effect of hub shape on performance of inducer[J].Journal of Rocket Propulsion,2012,38(2):38-43.
[18] 刘厚林,王健,王勇,等.角度变化系数对变螺距诱导轮性能的影响 [J].流体机械,2013,41(10):19-23.
[19] 王文廷,陈晖,李永鹏,等.高速离心泵诱导轮与离心轮的匹配 [J].排灌机械工程学报,2015,33(4):301-305.
[20] 潘中永,袁建平,杨敬江,等.诱导轮与泵主叶轮的匹配关系研究[J].水泵技术,2000(3):7-9,13.
[21] 叶汉玉,李家文,李欣.诱导轮旋转汽蚀数值模拟[J].火箭推进,2014,40(4):43-49.YE H Y,LI J W,LI X.Numerical simulations of rotating cavitation in inducer[J].Journal of Rocket Propulsion,2014,40(4):43-49.
[22] 李欣,肖立明,刘畅,等.变螺距诱导轮的气蚀性能研究[J].火箭推进,2017,43(2):1-8,17.LI X,XIAO L M,LIU C,et al.Study on cavitation performance of variable-pitch inducer[J].Journal of Rocket Propulsion,2017,43(2):1-8,17.
[23] 唐飞,李家文.液体火箭发动机诱导轮旋转汽蚀分析[J].推进技术,2012,33(4):639-644.
[24] 唐飞,李家文,李永,等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进,2013,39(3):44-49.TANG F,LI J W,LI Y,et al.Study on improving cavitation performance of inducer for liquid rocket engine[J].Journal of Rocket Propulsion,2013,39(3):44-49.
[25] 刘厚林,刘东喜,王勇,等.泵空化流数值计算研究现状及展望[J].流体机械,2011,39(9):38-44.
[26] 郭晓梅,朱祖超,崔宝玲,等.变螺距高速诱导轮的汽蚀特性[J].工程热物理学报,2010,31(8):1315-1318.
[27] 陈晖,李斌,张恩昭,等.液体火箭发动机高转速诱导轮旋转空化[J].推进技术,2009,30(4):390-395.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(01):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(01):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(01):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(01):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(01):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(01):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(01):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(01):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(01):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(01):15.
备注/Memo
收稿日期:2019-06-13; 修回日期:2019-07-22基金项目:国家装备预先研究项目(513201402)作者简介:李惠敏(1977—),女,硕士,研究领域为流体机械设计及优化