航天推进技术研究院主办
LIU Zhaohui,SONG Chenyang,CHEN Qiang,et al.Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel[J].Journal of Rocket Propulsion,2020,46(02):15-20.
吸热型碳氢燃料再生冷却性能评估方法
- Title:
- Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel
- 文章编号:
- 1672-9374(2020)02-0015-06
- 分类号:
- V231.1
- 文献标志码:
- A
- 摘要:
- 吸热型碳氢燃料作为吸气式高超声速飞行器的再生冷却剂,冷却剂出口温度可达到750 ℃以上。碳氢燃料的冷却能力和抗结焦特性指标,是再生冷却剂的关键参数。在工程应用参数范围内,建立了吸热型碳氢燃料再生冷却性能综合评估体系,实现燃料热沉、结焦和流动传热性能的综合评估。燃料热沉采用热平衡法测量。作为参考:燃料温度600 ℃,热沉约2.0 MJ/kg; 燃料温度750 ℃,热沉约3.5 MJ/kg。结焦采用层流流动阻力法进行定量测量,应用泊肃叶定律计算碳氢燃料结焦前后通道的当量内径,从而得到通道内结焦层的平均厚度。流动换热性能的评估方法是比较相同出口流体温度条件下不同燃料壁面温度沿轴向的分布趋势。以上吸热型碳氢燃料评估方法的建立,为研制吸热型碳氢燃料提供了有效的初步筛选途径。
- Abstract:
- The endothermic hydrocarbon fuel as the coolant in the airbreathing hypersonic vehicles, its working temperature could be up to 750 ℃.The effective cooling capacity and coking characteristics of hydrocarbon fuel at high temperature conditions are crucial for the regenerative cooling technology.An experimental evaluation system for the regenerative cooling performance of endothermic hydrocarbon fuel was constructed to realize the measurement and evaluation of heat sink, coking characteristics and heat transfer characteristics.The heat sink was measured by the thermal balance method.Basically, the heat sink could be 2.0 MJ/kg for fuel at temperature of 600 ℃ and 3.5 MJ/kg at 750 ℃.Coking propensity was measured by hydraulic resistance method at laminar conditions.The equivalent inner diameter of the test tube before and after coking test could be obtained by the poiseulle’s law.Then the average coking thickness could be obtained from the inner diameter before and after coking test.Heat transfer characteristics were evaluated by comparing the wall temperature behavior at the same outlet fluid temperature for different fuels.The above experimental evaluation methods provide an effective evaluation mean for the selection and development of endothermic hydrocarbon fuel.
参考文献/References:
[1] 贺武生.超燃冲压发动机研究综述[J].火箭推进, 2005, 31(1):29-32.HE W S.Review of scramjet engine development[J].Journal of Rocket Propulsion, 2005, 31(1):29-32.
[2] 吴家彤.6.5马赫超燃冲压发动机的近期飞行试验结果[J].火箭推进, 2004, 30(2):48-53.WU J T.Recent flight results of the Mach 6.5 scramjet engine[J].Journal of Rocket Propulsion, 2004, 30(2):48-53.
[3] 马杰, 梁俊龙.液体冲压发动机技术发展趋势和方向[J].火箭推进, 2011, 37(4):12-17.MA J, LIANG J L.Development trends and directions of liquid ramjet/scramjet technology[J].Journal of Rocket Propulsion, 2011, 37(4):12-17.
[4] 杜泉, 王建设, 付秀文.火箭冲压组合发动机部件缩尺关系理论分析初探[J].火箭推进, 2017, 43(6):70-75.DU Q, WANG J S, FU X W.Theoretical analysis of scaling laws for components of rocket-based combined cycle engine[J].Journal of Rocket Propulsion, 2017, 43(6):70-75.
[5] 沈海军, 程凯, 杨莉.近空间飞行器[M].北京:航空工业出版社, 2012.
[6] 崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展, 2009, 39(6):658-673.
[7] 闫杰,于云峰,凡永华.吸气式高超声速飞行器控制技术[M].西安:西北工业大学出版社, 2015.
[8] LANDER H, NIXON A C.Endothermic fuels for hypersonic vehicles[J].Journal of Aircraft, 1971, 8(4):200-207.
[9] 符全军, 燕珂, 杜宗罡, 等.吸热型碳氢燃料研究进展[J].火箭推进, 2005, 31(5):32-36.FU Q J, YAN K, DU Z G, et al.Research progress of endothermic hydrocarbon fuels[J].Journal of Rocket Propulsion, 2005, 31(5):32-36.
[10] 金烜, 沈赤兵, 吴先宇, 等.超燃冲压发动机再生冷却技术研究进展[J].火箭推进, 2016, 42(5):66-73.JIN X, SHEN C B, WU X Y, et al.Progress of regenerative cooling technology for scramjet[J].Journal of Rocket Propulsion, 2016, 42(5):66-73.
[11] EDWARDS T.Liquid fuels and propellants for aerospace propulsion 1903-2003[J].Journal of Propulsion and Power, 2003, 19(6):1089-1107.
[12] EDWARDS T, ANDERSON S.Results of high temperature JP-7 cracking assessment[C]//31st Aerospace Sciences Meeting.Reno, NV, USA.Reston, Virigina:AIAA, 1993.
[13] EDWARDS T.USAF supercritical hydrocarbonfuels interests[C]//31st Aerospace Sciences Meeting.Reno, NV, USA.Reston, Virigina:AIAA, 1993.
[14] LIU Z H, BI Q C, GUO Y, et al.Hydraulic and thermal effects of coke deposition during pyrolysis of hydrocarbon fuel in a mini-channel[J].Energy & Fuels, 2012, 26(6):3672-3679.
[15] LIU Z H, BI Q C, FENG J T.Evaluation of heat sink capability and deposition propensity of supercritical endothermic fuels in a minichannel[J].Fuel, 2015, 158:388-398.
[16] LIZ Z, WANG H Y, JING K, et al. Kinetics and modeling of supercritical pyrolysis of endothermic hydrocarbon fuels in regenerative cooling channels[J]. Chemical Engineering Science, 2019, 207:202-214.
[17] JINB T, JING K, LIU J, et al. Pyrolysis and coking of endothermic hydrocarbon fuel in regenerative cooling channel under different pressures[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125:117-126.
[18] LIU Z H, BI Q C, GUO Y, et al.Thermal induced static flow instability of hydrocarbon fuel in the regeneratively cooled structures of hypersonic vehicles[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference.Tours, France.Reston, Virigina:AIAA, 2012.
[19] JINGT T, HE G Q, QIN F, et al. An innovative self-adaptive method for improving heat sink utilization efficiency of hydrocarbon fuel in regenerative thermal protection system of combined cycle engine[J]. Energy Conversion and Management, 2018, 178:369-382.
[20] LIU Z H, BI Q C, GUO Y, et al.Convective heat transfer and pressure drop characteristics of near-critical-pressure hydrocarbon fuel in a minichannel[J].Applied Thermal Engineering, 2013, 51(1/2):1047-1054.
[21] YAN J G, LIU S C, GUO P C, et al. Experimental investigation on convection heat transfer of supercritical hydrocarbon fuel in a long mini tube[J]. Experimental Thermal and Fluid Science, 2020, 115:110100.
[22] GONG K Y, CAO Y, FENG Y, et al. Influence of secondary reactions on heat transfer process during pyrolysis of hydrocarbon fuel under supercritical conditions[J]. Applied Thermal Engineering, 2019, 159:113912.
[23] LIU Z H, TRUSLER J P M, BI Q C.Viscosities of liquid cyclohexane and decane at temperatures between(303 and 598)K and pressures up to 4 MPa measured in a dual-capillary viscometer[J].Journal of Chemical & Engineering Data, 2015, 60(8):2363-2370.
[24] FENG S, BI Q C, PAN H, et al.Isobaric specific heat capacities of emulsified kerosene at high temperature and pressure[J].Thermochimica Acta, 2018, 665:127-133.
[25] YANG Z Q, BI Q C, GUO Y, et al.Design of a gamma densitometer for hydrocarbon fuel at high temperature and supercritical pressure[J].Journal of Chemical & Engineering Data, 2014, 59(11):3335-3343.
相似文献/References:
[1]杜宗罡,史雪梅,符全军,等.高能液体推进剂研究现状和应用前景[J].火箭推进,2005,31(03):30.
Du Zonggang,Shi Xuemei,Fu Quanjun.Development status and prospect of higher energy liquid propellant[J].Journal of Rocket Propulsion,2005,31(02):30.
[2]符全军,燕珂,杜宗罡,等.吸热型碳氢燃料研究进展[J].火箭推进,2005,31(05):36.
Fu Quanjun,Yan Ke,Du Zonggang,et al.Research progress of endothermic hydrocarbon fuels[J].Journal of Rocket Propulsion,2005,31(02):36.
[3]吴有亮,张成印,潘 浩,等.再生冷却燃气对流换热系数计算方法优化研究[J].火箭推进,2018,44(01):22.
WU Youliang,ZHANG Chengyin,PAN Hao,et al.Optimization for calculation method of gas convective heat
transfer coefficient inside regeneratively-cooled chamber[J].Journal of Rocket Propulsion,2018,44(02):22.
[4]张 明,孙 冰.液氧/甲烷发动机变截面冷却通道传热数值研究[J].火箭推进,2019,45(02):9.
ZHANG Ming,SUN Bing.Numerical study of heat transfer in variable cross-section
cooling channels of LOX/methane rocket engines[J].Journal of Rocket Propulsion,2019,45(02):9.
[5]吴有亮,丁煜朔,刘 潇,等.再生冷却推力室准二维传热数值计算[J].火箭推进,2023,49(02):66.
WU Youliang,DING Yushuo,LIU Xiao,et al.Quasi-2D heat transfer calculation method of regenerative cooling thrust chamber[J].Journal of Rocket Propulsion,2023,49(02):66.
[6]陈锐达,徐辉,陈泓宇,等.1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(04):17.
CHEN Ruida,XU Hui,CHEN Hongyu,et al.Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J].Journal of Rocket Propulsion,2023,49(02):17.
[7]卞香港,李龙飞,王化余,等.基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J].火箭推进,2023,49(04):74.
BIAN Xianggang,LI Longfei,WANG Huayu,et al.Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J].Journal of Rocket Propulsion,2023,49(02):74.
[8]刘晗,肖媛媛,郑默,等.ReaxFF MD方法揭示的JP-10热解吸热与氧化放热机理[J].火箭推进,2024,50(05):53.[doi:10.3969/j.issn.1672-9374.2024.05.005]
LIU Han,XIAO Yuanyuan,ZHENG Mo,et al.Pyrolysis endothermic and oxidative exothermic mechanisms of JP-10 unraveled by ReaxFF molecular dynamics simulation[J].Journal of Rocket Propulsion,2024,50(02):53.[doi:10.3969/j.issn.1672-9374.2024.05.005]
备注/Memo
收稿日期:2019-12-05; 修回日期:2019-12-16基金项目: 国家自然科学基金(51776167)作者简介:刘朝晖(1985—),男,博士,副教授,研究领域为飞行器再生冷却技术和(吸热型)碳氢燃料相关应用