航天推进技术研究院主办
LEI Jiang,LU Ruishan,QIN Ling,et al.Experimental study of film-cooling characteristics of DJFC holes located upstream of a vane[J].Journal of Rocket Propulsion,2020,46(02):36-43.
静叶栅上游端壁双射流气膜冷却特性实验
- Title:
- Experimental study of film-cooling characteristics of DJFC holes located upstream of a vane
- 文章编号:
- 1672-9374(2020)02-0036-08
- Keywords:
- film-cooling; DJFC; vane cascade; PSP; blowing ratio; density ratio
- 分类号:
- V231.1
- 文献标志码:
- A
- 摘要:
- 为了进一步挖掘上游端壁气膜冷却的潜力,在低速叶栅风洞的静叶片上游端壁上,实验研究了双射流构型的气膜冷却特性,并与双排圆孔进行了对比。探究了吹风比(M=0.5,1.0,1.5,2.0)、密度比(Rd=1.0,1.5)的效应。端壁表面的气膜冷却效率通过压力敏感漆(PSP)测得。结果表明,吹风比的增大虽然会加剧吹离现象,但同时也会促进叶栅通道中、后段的气膜覆盖。密度比的增大会抑制气膜吹离,促进气膜横向覆盖和提高平均冷却效率。双射流孔相比于圆形孔,冷却气流在孔下游形成了反肾形涡,较好抑制了气膜吹离; 但从双射流孔喷出的冷却气流对于叶栅通道内的涡系也更加敏感。在高吹风比下,双射流孔的冷却效率相对于圆形孔有一定的优势,特别是双射流I构型。
- Abstract:
- To further explore the potential of film-cooling on the upstream endwall, the film-cooling characteristics of DJFC(double-jet film-cooling)holes on the endwall upstream of a vane cascade was studied by experiments and corresponding results were compared with double-row streamwise cylindrical holes located in the same position.Effects of blowing ratio and density ratio were discussed.PSP(pressure sensitive paint)was applied to measure film-cooling effectiveness on the endwall.Results show, though increased blowing ratio induces film lift-off, film coverage on the mid- and rear-portion of the endwall improves.Increased density ratio suppresses lift-off, enhances lateral coverage and increases lateral-average of effectiveness.Compared to SC(streamuise cylindrical)holes, anti-kidney vortices form at the exit of DJFC holes and thus decreases lift-off.However, DJFC holes are more sensitive to vortices generated in the cascade passage.At high blowing ratios, film effectiveness of DJFC holes are more advantageous over SC holes, especially DJFC I.
参考文献/References:
[1] 高兴峰, 张建伟, 孙冰, 等.推力室头部最优气膜参数研究[J].火箭推进, 2018, 44(2):10-17.GAO X F, ZHANG J W, SUN B, et al.Study on optimal gas film parameters of near-injection region in thrust chamber[J].Journal of Rocket Propulsion, 2018, 44(2):10-17.
[2] SINHA A K, BOGARD D G, CRAWFORD M E.Film-cooling effectiveness downstream of a single row of holes with variable density ratio[J].Journal of Turbomachinery, 1991, 113(3):442-449.
[3] BOGARD D G, THOLE K A.Gas turbine film cooling[J].Journal of Propulsion and Power, 2006, 22(2):249-270.
[4] HYAMS D G, LEYLEK J H.A detailed analysis of film cooling physics(part III):streamwise injection with shaped holes[J].Journal of Turbomachinery, 2000, 122(1):122-132.
[5] WRIGHT L M, MCCLAIN S T, BROWN C P, et al.Assessment of a double hole film cooling geometry using S-PIV and PSP[C]// Proceedings of ASME Turbo Expo 2013.San Antonio:ASME, 2013.
[6] CHEN A F, LI S J, HAN J C.Film cooling with forward and backward injection for cylindrical and fan-shaped holes using PSP measurement technique[C]// Proceedings of ASME Turbo Expo 2014.Germany:ASME, 2014.
[7] KUSTERER K, BOHN D, SUGIMOTO T, et al.Double-jet ejection of cooling air for improved film cooling[J].ASME J.Turbomachinery, 2007, 129(4):809-815.
[8] KUSTERER K, ELYAS A, BOHN D, et al.Film cooling effectiveness comparison between shaped and double jet film cooling holes in a row arrangment[C]// Proceedings of ASME Turbo Expo 2010.UK:ASME, 2010.
[9] HAN C, CHI Z R, REN J, et al.Optimal arrangement of combined-hole for improving film cooling effectiveness[C]// Proceedings of ASME Turbo Expo 2013.San Antonio:ASME, 2013.
[10] WANG Z, LIU J J, ZHANG C.Impacts of geometric parameters of double-jet film cooling on anti-kidney vortex structure and cooling effectiveness[C]// Proceedings of ASME Turbo Expo 2013.San Antonio:ASME, 2013.
[11] YAO J X, XU J, ZHANG K, et al.Interaction of flow and film-cooling effectiveness between double-jet film-cooling holes with various spanwise distances[J].ASME J.Turbomachinery, 2018, 140(12):121011.
[12] GOLDSTEIN R J, CHEN H P.Film cooling on a gas turbine blade near the end wall[J].Journal of Engineering for Gas Turbines and Power, 1985, 107(1):117-122.
[13] ORNANO F, POVEY T.Experimental and computational study of the effect of momentum-flux ratio on high pressure ngv endwall cooling systems[C]// Proceedings of ASME Turbo Expo 2017.NC:ASME, 2017.
[14] 姚家旭, 雷蒋.不同横向距离下双射流孔流动与冷却特性实验研究[J].火箭推进, 2018, 44(1):36-43.YAO J X, LEI J.Experimental study on flow and cooling characteristics of double-jet film-cooling holes at different spanwise distances[J].Journal of Rocket Propulsion, 2018, 44(1):36-43.
[15] 王建, 孙冰, 魏玉坤.气膜冷却传热传质类比研究[J].火箭推进, 2008, 34(2):31-36.WANG J, SUN B, WEI Y K.Heat and mass transfer in gaseous film cooling[J].Journal of Rocket Propulsion, 2008, 34(2):31-36.
[16] KENDALL A, KOOCHESFAHANI M.A method for estimating wall friction in turbulent wall-bounded flows[J].Experiments in Fluids, 2008, 44(5):773-780.
[17] KLINE S J, MCCLINTOCK F.Describing uncertainties in single-sample experiments[J].Mechanical Engineering, 1953, 75(1):3-8.
相似文献/References:
[1]王建,孙冰,魏玉坤.气膜冷却传热传质类比研究[J].火箭推进,2008,34(02):31.
Wang Jianl,Sun Bing,Wei Yukun.Heat and mass transfer in gaseous film cooling[J].Journal of Rocket Propulsion,2008,34(02):31.
[2]任加万,谭永华.燃烧室缝槽气膜冷却方案研究[J].火箭推进,2007,33(06):28.
Ren Jiawan,Tan Yonghua.Investigation on the structure scheme of slot air film cooling combustion chamber[J].Journal of Rocket Propulsion,2007,33(02):28.
[3]姚家旭,雷 蒋.不同横向距离下双射流孔流动与冷却特性实验研究[J].火箭推进,2018,44(01):36.
YAO Jiaxu,LEI Jiang.Experimental study on flow and cooling characteristics of
double-jet film-cooling holes at different spanwise distances[J].Journal of Rocket Propulsion,2018,44(02):36.
[4]姚家旭,罗 丁,范 青,等.绝热气膜冷却效率的传热传质类比数值分析[J].火箭推进,2021,47(01):62.
YAO Jiaxu,LUO Ding,FAN Qing,et al.Numerical analysis of heat-mass transfer analogy for adiabatic film-cooling effectiveness[J].Journal of Rocket Propulsion,2021,47(02):62.
备注/Memo
收稿日期:2019-07-12; 修回日期:2019-11-04基金项目:国家自然科学基金(51776153); 111引智项目(B18040); 西安市科技计划项目(201805034YD12CG18(3))作者简介:雷蒋(1980—),男,副教授,博士生导师,研究领域为推进系统热端部件传热冷却