航天推进技术研究院主办
QIN Xinhua,WANG Xin,ZHOU Saisai.Design optimization of heat shield for main fuel pipeline in high-altitude engine[J].Journal of Rocket Propulsion,2020,46(02):71-76.
高空发动机燃料主管路防热罩设计优化
- Title:
- Design optimization of heat shield for main fuel pipeline in high-altitude engine
- 文章编号:
- 1672-9374(2020)02-0071-06
- 分类号:
- V431
- 文献标志码:
- A
- 摘要:
- 针对火箭飞行工作中高空发动机燃料主管路系统防热罩存在热防护能力不足的问题,开展了高空羽流条件下的仿真计算和分析,依据温度计算值确定了防热罩紧固件在高温下抗拉伸强度低,在较高拧紧力矩条件下存在锌、镉脆断裂的薄弱环节,从而导致防热罩脱落。防热罩脱落后其内充填的隔热包覆材料被羽流吹落,燃料主汽蚀管连接法兰直接暴露在高温羽流环境中,高温导致法兰连接及密封失效从而产生燃料泄漏。针对防热罩热防护设计中存在的薄弱环节完成了设计改进,采用头锥形防热罩、高温合金材料的紧固件和多层耐高温隔热材料捆扎包覆等设计改进方案后,经过了高温、振动、地面发动机热试车和飞行试验验证,未出现前述故障。
- Abstract:
- For the problem of insufficient thermal protection capability of the heat shield of the main fuel pipeline in high altitude engine during the flight, simulation calculation and analysis under high-altitude plume conditions were carried out.Based on the calculated temperature, it is determined that the heat shield fastener has low tensile strength at high temperatures, and there are weaknesses of Zn-Cr brittle fracture under the condition of high tightening torque, which leads to the fall off of the heat shield.After the heat shield falls off, the insulation material inside the heat shield is blown off by the plume flow, and the connecting flange of main fuel venturi-tube is directly exposed to the high temperature plume environment, which leads to the failure of flange and seal, resulting in the fuel leakage.To improve the design of the heat shield, the cone-shaped heat shield, fastener of high temperature alloy material and multi-layer of high-temperature heat-resistant insulation material are adopted.These optimizations have been validated by the high temperature, vibration, ground and rocket flight tests.
参考文献/References:
[1] 郭敬, 孔凡超, 胡旭坤.空间发动机羽流研究技术发展综述[J].火箭推进, 2014, 40(6):51-58.GUO J, KONG F C, HU X K.Research on plume flow of space thrusters[J].Journal of Rocket Propulsion, 2014, 40(6):51-58.
[2] JRFONTENOT J E.Thermal radiation from solid rocket plumes at high altitude[J].AIAA Journal, 1965, 3(5):970-972.
[3] WATSON G H, LEE A L.Thermal radiation model for solid rocket booster plumes[J].Journal of Spacecraft and Rockets, 1977, 14(11):641-647.
[4] NELSON H F.Backward Monte Carlo modeling for rocket plume base heating[J].Journal of Thermophysics and Heat Transfer, 1992, 6(3):556-558.
[5] 樊士伟, 张小英, 朱定强, 等.用FVM法计算固体火箭羽流的红外特性[J].宇航学报, 2005, 26(6):793-797.
[6] 张小英, 朱定强, 蔡国飙.固体火箭羽流红外特性的DOM法模拟及高度影响研究[J].宇航学报, 2007, 28(3):702-706.
[7] 亓雪芹, 王平阳, 张靖周, 等.反向蒙特卡罗法模拟波瓣喷管的红外辐射特性[J].上海交通大学学报, 2005, 39(8):1229-1232.
[8] 帅永, 董士奎, 刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J].红外与毫米波学报, 2005, 24(2):100-104.
[9] 于胜春, 汤龙生.固体火箭发动机喷管及羽流流场的数值分析[J].固体火箭技术, 2004, 27(2):95-97.
[10] 朱定强, 薛莲, 蔡国飙, 等.轨控发动机真空流场计算[J].宇航学报, 2006, 27(5):830-833.
[11] 程晓丽, 毛铭芳, 阎喜勤.小推力发动机高空羽流场数值模拟[J].空间科学学报, 2002, 22(3):261-267.
[12] 黄琳, 聂万胜, 陈伟芳.姿控发动机高空羽流流场干扰效应的DSMC方法研究[J].空气动力学学报, 2003, 21(1):104-108.
[13] 范瑞祥, 徐珊姝, 宫宇昆, 等.基于CFD/DSMC羽流仿真的新型运载火箭二级尾舱整体防热方案研究[J].载人航天, 2018, 24(4):500-504.
[14] 程晓丽, 李明智, 毛铭芳, 等.高空羽流场的DSMC计算和实验研究[J].空气动力学学报, 2002, 20(1):9-14.
[15] 杨帆, 王平阳, 包轶颖, 等.二级火箭喷流对底部热环境影响的数值模拟[J].上海航天, 2009, 26(5):46-51.
[16] 李茂, 陈世哲, 陈春富.火箭发动机地面水平试车尾流温度场仿真分析[J].火箭推进, 2012, 38(6):29-34.LI M, CHEN S Z, CHEN C F.Simulation analysis on wake flow temperature field of rocket engine in horizontal ground test[J].Journal of Rocket Propulsion, 2012, 38(6):29-34.
[17] 张光喜, 周为民, 张钢锤, 等.固体火箭发动机尾焰流场特性研究[J].固体火箭技术, 2008, 31(1):19-23.
[18] 李猛, 张晓宏, 孙美, 等.改性双基推进剂两相化学反应羽流特性研究[J].弹箭与制导学报, 2012, 32(1):123-126.
[19] 张忠利.液体火箭发动机在高空工作期间喷管及其周围流场研究[J].火箭推进, 2003, 29(2):7-12.ZHANG Z L.Research on plume and nozzle of liquid rocket engine working in high altitude[J].Journal of Rocket Propulsion, 2003, 29(2):7-12.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(02):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(02):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(02):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(02):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(02):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(02):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(02):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(02):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(02):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(02):15.
备注/Memo
收稿日期:2019-05-09; 修回日期:2019-07-18基金项目:国家预先研究项目(41410040202)作者简介:秦新华(1966—),男,高级工程师,研究领域为液体火箭发动机总体设计