航天推进技术研究院主办
Hui,WU Erlong.Development and in-orbit verification of orbit-control engine in YZ-3 upper stage[J].Journal of Rocket Propulsion,2020,46(03):11-18.
远征三号上面级轨控发动机研制及在轨验证
- Title:
- Development and in-orbit verification of orbit-control engine in YZ-3 upper stage
- 文章编号:
- 1672-9374(2020)03-0011-08
- 分类号:
- V439.7
- 文献标志码:
- A
- 摘要:
- 综述了国内外上面级及其轨控发动机技术发展情况。基于远征三号上面级的任务特点,提出了5 000 N轨控发动机技术方案,着重介绍了5 000 N发动机的地面试验和首次飞行应用情况,总结了远征三号上面级轨控发动机研制经验,供类似火箭发动机研制参考。远征三号上面级5 000 N发动机采用挤压式推进剂供应系统、直流式喷注器、再生冷却方案和复合材料喷管延伸段,具有结构简单、多次启动能力强、双向摇摆角度大等优势,于2018年12月29日进行了首次飞行应用
- Abstract:
- The technical development of the upper stage and its orbit-control engine at home and abroad is reviewed in this paper. Based on the mission characteristics of YZ-3 upper stage, the technical scheme of 5 000 N upper stage engine is put forward, focusing on its ground tests and the first flight application. The development experience of YZ-3 upper stage engine is summarized for the reference of similar rocket engine development. Since the 5 000 N upper stage engine of YZ-3 adopts the extruded propellant supply system, orifice injector,regenerative cooling and C/SiC composite nozzle,it has the advantages of simple structure,multiple ignitions,large scale two-way swing. The first application flight was carried on December 29,2018
参考文献/References:
[1] 马昆, 郭武, 关嵩, 等. 上面级发展现状及趋势分析[J]. 导弹与航天运载技术, 2013(6): 24-28.
[2] 杨华, 陈宗基, 秦旭东. 运载火箭上面级姿控技术研究[J]. 航天控制, 2011, 29(6): 84-87.
[3] 林木. 运载火箭上面级功能与技术发展分析[J]. 上海航天, 2013, 30(3): 33-38.
[4] SIPPEL M. Advanced technology upper stages for future launchers[C]//61st International Astronautical Congress.Prague, Czech:[s.n.],2010.
[5] 龙乐豪, 李平岐, 秦旭东, 等. 我国航天运输系统60年发展回顾[J]. 宇航总体技术, 2018(2): 1-6.
[6] 赵自强, 刘汉兵, 吴志亮. 国内外上面级发动机技术发展现状与趋势[J]. 国际太空, 2016(12): 46-52.
[7] HERBERTZ A, MANFLETTI C, FROMM C. Performance analysis of low-complexity upper-stage demonstrator engines[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH. Reston, Virginia: AIAA, 2014.
[8] GRAHAM S. Reflections on centaur upper stage integration by the NASA lewis(Glenn)research center[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH. Reston, Virginia: AIAA, 2014.
[9] KRUGE A. Development of the A5ME upper stage[R]. AIAA 2013-4057.
[10] DELANGE J. The VINCI upper stage engine: toward the demonstration of maturity[R].AIAA 2013-4054.
[11] BALEPIN V. New upper stage expander cycles [R]. AIAA 2013-4055.
[12] CAVALLINI E, BIANCHI D, FAVINI B, et al. Propellant trade-off analysis for upper stage solid rocket motors performance[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.San Jose, CA. Reston, Virginia: AIAA,2013.
[13] CASALINO L, PASTRONE D, SIMEONI F. Comparison of approximate and exact approaches for the optimization of hybrid-rocket upper-stage[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA. Reston, Virginia: AIAA, 2013.
[14] WILHELM W. Thermal control of the cryogenic upper stage of ARIANE 5 midlife evolution[R]. AIAA 2012-3475.
[15] ARNOLD R, GOETZ A, QUERING K, et al. Current status of the technology development project for a new storable propellant upper stage engine demonstrator[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, Georgia. Reston, Virigina: AIAA,2012.
[16] KARABEYOGLU A. High performance hybrid upper stage motor [R].AIAA 2011-6025.
[17] CASALINO L. Hybrid rocket upper stage optimization: effects of grain geometry [R]. AIAA 2011-6024.
[18] HALL J.Optimized dual-expander aerospike nozzle upper stage rocket engine [R]. AIAA 2011-419.
[19] VERMA D. Flight testing of a prototype LOX/propylene upper stage engine [R]. AIAA 2010-0175.
[20] LACOMBE A, PICHON T, LACOSTE M. 3D carbon-carbon composites are revolutionizing upper stage liquid rocket engine performance by allowing introduction of large nozzle extension[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California. Reston, Virigina: AIAA, 2014.
[21] QUINN J. Overview of the main propulsion system for the NASA Ares I upper stage [R].AIAA 2009-5131.
[22] HONSE J. Delta-qualification test of aerojet 6 and 9 Lbf MR-106 monopropellant hydrazine thrusters for use on the Atlas centaur upper stage during the Lunar Re [R]. AIAA 2009-5481.
[23] CARUANA J. FLPP expander-cycle upper stage engine demonstrator achievements and perspectives [R]. AIAA 2009-6483.
[24] GEMBA K. Development and testing of a prototype LOX/propylene upper stage engine [R]. AIAA 2008-4839.
[25] SCHFER K. Operational conditions of P4.1 altitude simulation for VINCI upper stageengine [R]. AIAA 2008-4840.
[26] DAVIS D. NASA Ares I crew launch vehicle upper stage overview [R]. AIAA 2008-4897.
[27] BYRD T. From concept to design: progress on the J-2X upper stage engine for the Ares launch vehicles[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT. Reston, Virigina: AIAA, 2008.
[28] LACOMBE A, PICHON T, LACOSTE M. High temperature composite nozzle extensions: a mature and efficient technology to improve upper stage liquid rocket engine performance[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, OH. Reston, Virigina: AIAA,2007.
[29] VERHAGE M. NASA Ares I crew launch vehicle upper stage overview [R]. AIAA 2007-5831.
[30] BYRD T, KYNARD M. Progress on the J-2X upper stage engine for the Ares I crew launch vehicle and the Ares V cargo launch vehicle[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, OH. Reston, Virigina: AIAA,2007.
[31] NETWALL C, OSBORN M, CLAUSS C, et al. Transient pressure analysis and verification testing for the micro-satellite technology experiment upper stage propulsion system[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, OH. Reston, Virigina: AIAA,2007.
[32] DURTESTE S. A transient model of the VINCI cryogenic upper stage rocket engine[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, OH. Reston, Virigina: AIAA,2007.
[33] OSBORN M. Micro-satellite technology experiment upper stage propulsion system development [R]. AIAA 2007-5434.
[34] 刘昌国, 邱金莲, 陈明亮. 液体火箭发动机复合材料喷管延伸段研究进展[J]. 火箭推进, 2019, 45(4): 1-8.
LIU C G, QIU J L, CHEN M L. Research progress of composites nozzle extension for liquid rocket engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 1-8.
[35] 潘一力,周海清,程诚.3 000 N液氧/液甲烷发动机方案与试验研究[J].火箭推进,2018,44(6):7-13.
PAN Y L, ZHOU H Q, CHENG C.Scheme and test of 3 000 N liquid oxygen and liquid methane rocket engine[J].Journal of Rocket Propulsion,2018,44(6):7-13.
[36] 刘畅, 刘欣, 肖立明, 等. 空间多次启动、长期在轨泵压式动力系统方案研究[J]. 导弹与航天运载技术, 2017(5): 41-44.
备注/Memo
收稿日期:2019-08-23; 修回日期:2019-10-14
基金项目:上海市空间发动机工程技术研究中心资助项目(17DI2280800)
作者简介:陈明亮(1986—),男,硕士,高级工程师,研究领域为液体火箭发动机设计研发