航天推进技术研究院主办
WANG Yong,JU Le,YANG Weidong,et al.Experimental investigation on vortex-cooled technology of 150 N GO2/kerosene engine[J].Journal of Rocket Propulsion,2020,46(03):26-32.
150 N气氧/煤油发动机涡流冷却技术试验
- Title:
- Experimental investigation on vortex-cooled technology of 150 N GO2/kerosene engine
- 文章编号:
- 1672-9374(2020)03-0026-07
- Keywords:
- attitude control engine; GO2/kerosene; vortex-cooled thrust chamber; numerical simulation; hot-fire test
- 分类号:
- V434.13
- 文献标志码:
- A
- 摘要:
- 为探索百牛量级姿控发动机采用气氧/煤油涡流冷却推力室的可行性,开展了涡流冷却技术的试验验证工作。在理论分析和数值仿真的基础上,完成了150 N气氧/煤油涡流冷却推力室设计。数值仿真结果表明:内旋流区域占燃烧室直径Dc的87.8%,燃烧化学反应发生在39%~81%Rc的环形区域。经热试考核,燃烧室点火可靠,工作稳定,燃烧效率达0.91; 形成了有效的气膜冷却,壁面和头部热防护可靠,充分验证了内外双漩涡结构的存在
- Abstract:
- In order to explore the feasibility of GO2/kerosene vortex-cooled thrust chamber used in the attitude control engine with a hundred Newton level, an experimental verification of vortex-cooled technology was carried out. Based on the theoretical analysis and the numerical simulation, the design of 150 N GO2/kerosene vortex-cooled thrust chamber was completed. The numerical simulation results show that the internal swirling area accounts for 87.8% of the chamber diameter, and the combustion chemical reaction occurs in the annular region with 39%~81% of chamber radius. Through the hot-fire test, the combustion chamber achieves the reliable ignition, stable operation and combustion efficiency of 0.91. An effective gas film cooling is formed and the thermal protection of thrust chamber wall and head is reliable, which fully indicates the existence of internal and external double vortex structure
参考文献/References:
[1] 王爱玲, 林庆国, 吴建军. 运载火箭气氧/煤油姿控发动机技术研究[J]. 上海航天, 2006, 23(5): 6-11.
[2] 许宏博, 吉林, 金盛宇, 等. 气氧/煤油无毒姿控发动机技术研究[J]. 火箭推进, 2015, 41(5): 12-16.
XU H B, JI L, JIN S Y, et al. Technology of GOX/kerosene non-toxic attitude control engine[J]. Journal of Rocket Propulsion, 2015, 41(5): 12-16.
[3] CHIAVERINI M J, MALECKI M J, J ARTHUR S, et al. Vortex combustion chamber development for future liquid rocket engine applications[R]. AIAA 2002-4149.
[4] FANG D Q, MAJDALANI J, CHIAVERINI M J. Simulation of the cold-wall swirl driven combustion chamber[R]. AIAA 2003-5055.
[5] FANG D Q, MAJDALANI J, CHIAVERINI M J. Hot flow model of the vortex cold wall liquid rocket[R]. AIAA 2004-3676.
[6] JARTHUR S, KNUTH W H, MALECKI M J, et al. Development of a LOX/RP-1 vortex combustion cold-wall thrust chamber assembly[R].AIAA 2002-4144.
[7] CHIAVERINI M J, MALECKI M J, J ARTHUR S, et al. Vortex thrust chamber testing and analysis for O2-H2 propulsion applications[R]. AIAA 2003-4473.
[8] CHIAVERINI M J, J ARTHUR S, MUNSON S M. Laboratory characterization of vortex-cooled thrust chambers for methane/O2 and H2/O2[R]. AIAA 2005-4131.
[9] MARK A, RENE V, CRAIG R, et al. Vortex chamber flow field characterization for gelled propellant combustor applications[R]. AIAA 2003-4474.
[10] ROM C G, ANDERSON M H, CHIAVERINI M J. Cold flow analysis of a vortex chamber engine for gelled propellant combustor applications[R]. AIAA 2004-3359.
[11] MUNSON S M, J ARTHUR S, ROCHOLLJ D, et al. Development of a low-cost vortex-cooled thrust chamber using hybrid fabrication techniques[R]. AIAA 2011-5835.
[12] MAICKE B A, MAJDALANI J. Characterization of particle trajectories in the bidirectional vortex engine[R]. AIAA 2015-3849.
[13] MAJDALANI J, CHIAVERINI M J. Characterization of GO2-GH2 simulations of a miniature vortex combustion cold-wall chamber[J]. Journal of Propulsion and Power, 2017, 33(2): 387-397.
[14] 吴东波, 李家文, 常克宇. GH2/GO2涡流冷却推力室设计与数值计算[J]. 火箭推进, 2010, 36(5): 17-22.
WU D B, LI J W, CHANG K Y. Design and numerical calculation of GH2/GO2 vortex-cooled combustion chamber[J]. Journal of Rocket Propulsion, 2010, 36(5): 17-22.
[15] 唐飞, 李家文, 常克宇. 涡流冷却推力室中涡流结构的分析与优化[J]. 推进技术, 2010, 31(2): 165-169.
[16] 李家文, 唐飞, 俞南嘉. 推力室涡流冷却技术试验研究[J]. 推进技术, 2012, 33(6): 956-960.
[17] 李家文, 王化余, 叶汉玉, 等. 涡流冷却推力室燃烧效率分析[J]. 推进技术, 2013, 34(11): 1507-1512.
[18] 路强, 俞南嘉, 李恭楠, 等. GH2/GO2涡流冷却透明燃烧室方案设计及试验研究[J]. 火箭推进, 2013, 39(2): 1-5.
LU Q, YU N J, LI G N, et al. Design and experiment research of GH2/GO2 vortex-cooling transparent combustion chamber[J]. Journal of Rocket Propulsion, 2013, 39(2): 1-5.
[19] 李恭楠, 俞南嘉, 路强. 涡流冷却推力室流场特征与性能仿真[J]. 航空动力学报, 2014, 29(2): 420-426.
[20] YU N J, ZHAO B, LI G N, et al. Experimental and simulation study of a gaseous oxygen/gaseous hydrogen vortex cooling thrust chamber[J]. Acta Astronautica, 2016, 118: 11-20.
[21] 孙得川, 杨建文, 白荣博. 气氧/甲烷涡流冷壁燃烧室流场与壁面耦合传热分析[J]. 推进技术, 2011, 32(3): 401-406.
相似文献/References:
[1]李志勋,田健江,张彤.姿控发动机试验热流参数测量系统设计[J].火箭推进,2010,36(02):53.
Li Zhixun,Tian Jianjiang,Zhang Tong.Design of heat flux measurement system of attitude control engine tests[J].Journal of Rocket Propulsion,2010,36(03):53.
[2]郭宁敏.自适应控制器在贮箱增压系统中的应用[J].火箭推进,2009,35(01):59.
Guo Ningmin.Application of adaptive controller
in tank pressurization system[J].Journal of Rocket Propulsion,2009,35(03):59.
[3]李晓瑾,常小庆.姿控发动机减压阀出口压力
偏差计算方法研究[J].火箭推进,2008,34(06):19.
Li Xiaojin,Chang Xiaoqing.Research on outlet pressure deViation calculation of
pressure reducing ValVe f6r attitude contr01 engine[J].Journal of Rocket Propulsion,2008,34(03):19.
[4]蒋瑜.姿控发动机试验阀门电流信号采集系统设计[J].火箭推进,2006,32(06):56.
Jiang Yu.Valve current signal acquisition system design for liquid attitude control rocket engine test[J].Journal of Rocket Propulsion,2006,32(03):56.
[5]杨林涛,沈赤兵.基于AMESim的姿控发动机压力振荡传递特性研究[J].火箭推进,2019,45(03):26.
YANG Lintao,SHEN Chibing.Research on pressure oscillation transmission characteristics of attitude control engine based on AMESim[J].Journal of Rocket Propulsion,2019,45(03):26.
[6]杨林涛,沈赤兵.基于正交试验设计的姿控发动机起动特性[J].火箭推进,2019,45(05):38.
YANG Lintao,SHEN Chibing.Numerical analysis on starting characteristics of attitude control engine based on orthogonal test design method[J].Journal of Rocket Propulsion,2019,45(03):38.
[7]程诚,周海清,田桂,等.液氧/甲烷轨姿控推进系统集成演示试验[J].火箭推进,2023,49(03):56.
CHENG Cheng,ZHOU Haiqing,TIAN Gui,et al.System integration and hot-fire test of liquid oxygen/liquid methane rocket engine for orbit maneuver and attitude control[J].Journal of Rocket Propulsion,2023,49(03):56.
备注/Memo
收稿日期:2019-09-27; 修回日期:2019-11-11
基金项目:国家自然科学基金(51606138)
作者简介:王勇(1987—),男,硕士,研究领域为喷雾与燃烧技术