航天推进技术研究院主办
GUAN Jie,LIU Shang,LIU Zhirang.Temperature control of oxygen-riched gas during complete self start-up process for staged combustion cycle engine[J].Journal of Rocket Propulsion,2020,46(03):33-40.
补燃发动机完全自身起动过程富氧燃气温度控制
- Title:
- Temperature control of oxygen-riched gas during complete self start-up process for staged combustion cycle engine
- 文章编号:
- 1672-9374(2020)03-0033-08
- Keywords:
- liquid rocket engine; staged combustion cycle engine; complete self-starting; temperature of oxygen-riched gas
- 分类号:
- V434.2
- 文献标志码:
- A
- 摘要:
- 为了防止富氧补燃循环发动机在完全自身起动过程中出现烧蚀情况,需要研究降低发生器富氧燃气温度峰值的方法。利用成熟的发动机组件数学模型,建立了发动机完全自身起动过程动态仿真模型,并通过试验数据验证了仿真模型的合理性。基于计算结果,分析了起动过程中发生器富氧燃气温度的变化过程,进一步分析了产生3个温度极大值的原因。通过仿真研究,分析了不同起动参数对富氧燃气温度峰值的影响。结果表明:提高发生器氧化剂流量和减缓发生器燃料流量增速可以降低富氧燃气温度峰值,具体措施有提高氧化剂贮箱压力、减小供应管路长度、提高副路转级阀的作动压力和减小其转级速率
- Abstract:
- To avoid the ablation during the complete self-starting process of staged combustion cycle engine using an oxidant gas generator, it is necessary to study the method of reducing the peak temperature of oxygen-riched gas. Using the mature mathematical model of engine components, a transient simulation model of engine self-starting process was established, and it was validated by the test data. Based on the calculation results, the temperature change of oxygen-riched gas in the generator during the start-up process was analyzed, and the reason for the three temperature maxima was further analyzed. The influence of different starting parameters on the peak temperature of oxygen-riched gas was analyzed by means of the numerical simulation. The results show that several solutions could be taken to control the peak temperature during start-up process, including improving the oxidizer flow and slowing down the growth rate of secondary fuel flow. The specific measures include increasing the oxidizer tank pressure, reducing the length of supply line, increasing the actuation pressure of stage valve and reducing its conversion rate
参考文献/References:
[1] 张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[2] 李元启, 刘红军, 徐浩海, 等. 液体火箭发动机动态特性仿真技术研究进展[J]. 火箭推进, 2017, 43(5): 1-6.
LI Y Q, LIU H J, XU H H, et al. Research progress on numerical simulation technology of liquid rocket engine dynamic characteristics[J]. Journal of Rocket Propulsion, 2017, 43(5): 1-6.
[3] 舍维科夫 A A.液体火箭发动机的自动控制理论[M].张兴波,译.西安:航天科技集团公司第六研究院第十一研究所,2002.
[4] 别利亚耶夫 E H,切万诺夫 B B.液体火箭发动机的数学模拟[M].牛晓丽,译.西安:航天科技集团公司第六研究院第十一研究所,2015.
[5] 格列克曼.液体火箭发动机自动调节[M]. 顾明初,译.北京:宇航出版社,1995.
[6] MASON J R,SOUTHWICK R D.Large liquid rocket engine transient performance simulation system final report [R].NASA-CR-184099.
[7] MATTEO F D,ROSA M D.Start-up transient simulation of a liquid rocket engine[R].AIAA 2011-6032.
[8] LYTLE J K. The numerical propulsion system simulation: a multidisciplinary design system for aerospace vehicles[C]//14th international symposium on air breathing engines. Italy:[s.n.],1999.
[9] MEYER C M,MAUL W A.The application of neural networks to the SSME startup transient[R].AIAA 1991-2530.
[10] YAMANISHI N,KIMURA T,TAKAHASHI M,et al.Transient analysis of the LE-7A rocket engine using the rocket engine dynamic simulator(REDS)[R].AIAA 2004-3850.
[11] FUKUSHIMA Y, LMOTO T. Lessons learned in the development of the LE-5 and LE-7[R]. AIAA 1994-3375.
[12] KANMURI A, KANDA T, WAKAMATSU Y. Transient analysis of LOX/LH2 rocket engine(LE-7)[R].AIAA 1989-2736.
[13] 张卫红,李玲玲,颜勇,等.大推力氢氧发动机起动瞬态特性仿真研究[J].航天推进与动力,2004(4):7-12.
[14] 尘军,王桁.高压补燃氢氧发动机系统动态仿真[J].航天推进与动力,2008(2):15-21.
[15] 蒲光荣, 单磊, 赵晓慧, 等. 泵压式多次起动发动机起动过程仿真研究[J]. 火箭推进, 2019, 45(5): 17-24.
PU G R, SHAN L, ZHAO X H, et al. Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J]. Journal of Rocket Propulsion, 2019, 45(5): 17-24.
[16] 刘上, 王艺杰, 程晓辉, 等. 小推力泵压式发动机自身起动过程仿真分析[J]. 火箭推进, 2016, 42(4): 7-13.
LIU S, WANG Y J, CHENG X H, et al. Simulation of self start-up process for low thrust pump-fed rocket engine[J]. Journal of Rocket Propulsion, 2016, 42(4): 7-13.
[17] 吴有亮,赵海龙,李强,等.基于Modelica的液氧/甲烷发动机起动过程仿真研究[J].航天推进与动力,2018(2):37-42.
[18] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(03):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(03):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(03):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(03):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(03):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(03):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(03):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(03):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(03):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(03):15.
备注/Memo
收稿日期:2019-09-02; 修回日期:2019-11-06
基金项目:液体火箭发动机技术重点实验室基金项目(6142704180308)
作者简介:管杰(1995—),男,硕士,研究领域为液体火箭发动机系统动力学