航天推进技术研究院主办
LIU Kailei,WANG Yao,WANG Chun.The fast calculation method for thrust line of rocket-powered aircraft[J].Journal of Rocket Propulsion,2020,46(03):62-67.
火箭动力飞行器推力线快速测算方法
- Title:
- The fast calculation method for thrust line of rocket-powered aircraft
- 文章编号:
- 1672-9374(2020)03-0062-06
- Keywords:
- thrust line measurement; aircraft; rocket engine; fast calculation method; deviation analyse; engineering method
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 为解决传统火箭发动机安装推力线测量方法耗时较长的问题,通过分析推力线偏差因素、构建偏差计算模型,得到工程简化的推力线快速测算方法。将飞行器推力线偏差分为机体结构偏差和发动机自身推力线偏差,在飞行器装配阶段利用现代化雷达或光学测量技术获取飞行器结构偏差,并结合发动机生产阶段自身推力线偏差数据,可快速计算、获取飞行器安装推力线。最后采用激光雷达推力线测量方法进行对比测试,试验表明快速测算方法仅耗时约10 min、且最大误差小于0.1°,从而验证了该方法的便捷性和有效性,可应用于液体或固体火箭动力飞行器推力线的快速获取
- Abstract:
- At present, it takes a long time to get measurement result for the traditional digital measurement of thrust line, which becomes the main bottleneck that restrict the fast re-launch of the reusable rocket powered aircraft. In this paper, the deviation of thrust line during the installation of rocket engine was divided into the structural deviation and thrust line deviation of engine itself. The structural deviation can be obtained through the modern optical measurement technology during the assembling stage. Then the structural deviation and the data of engine thrust line were combined, the engineering calculation method for the engine’s installed thrust line data can be quickly obtained before re-launch. The convenience and effectiveness of this method can be confirmed by running a comparative test experiment with the laser radar measurement. The fast calculation method only costs 10 minutes and has a maximum error of 0.1°, which can be applied on quickly measuring the thrust line of liquid or solid rocket-powered aircraft
参考文献/References:
[1] 张春富, 唐文彦, 李慧鹏, 等. 激光跟踪仪在固体火箭发动机推力线测量中的应用[J]. 固体火箭技术, 2007, 30(6): 548-551.
[2] MESSIER D. Spaceship two has wings [J]. AD ASTRA,2010:30-33.
[3] 士元. “太空船一号”问鼎1 000万美元大奖(上)[J]. 航空知识, 2004(11): 36-39.
[4] THOMPSON R A. Review of X-33 hypersonic aerodynamic and aerothermodynamic[C]// ICAS 2000 Congress. [S.l.]:ICAS,2000.
[5] 李伟森, 李蕾, 杜昌达. 发动机推力线快速测量方法研究[J]. 宇航计测技术, 2012, 32(5): 56-60.
[6] 王志军. 基于激光雷达测量原理的火箭推力线测量技术研究[D]. 长春: 长春理工大学, 2011.
[7] 何秉高. 基于激光雷达的飞行器水平测量技术研究[D]. 长春: 长春理工大学, 2009.
[8] 李学焕, 李俊, 王立新, 等. 月球着陆探测器发动机推力线测量及标定[J]. 火箭推进, 2013, 39(6): 85-89.
LI X H, LI J, WANG L X, et al. Measurement and calibration of thrust line of lunar lander engine[J]. Journal of Rocket Propulsion, 2013,39(6): 85-89.
[9] 张揭. 飞机水平测量中的数字化应用[D]. 成都: 电子科技大学, 2011.
[10] 喻世臣, 康晓峰, 翟南, 等. 基于激光跟踪仪、iGPS的飞机水平测量技术研究[J]. 航空制造技术, 2015(21): 119-121.
[11] 李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[12] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018(3): 1-9.
[13] 郑大勇, 颜勇, 孙纪国. 液氧甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35.
[14] 陈凯, 王翔, 刘明鑫, 等. 坐标转换理论及其在半实物仿真姿态矩阵转换中的应用[J]. 指挥控制与仿真, 2017, 39(2): 118-122.
[15] 夏喜旺, 杜涵, 刘汉兵. 关于大角度范围内四元数与欧拉角转换的思考[J]. 导弹与航天运载技术, 2012(5): 47-53.
[16] 张春富,唐文彦.固体火箭发动机静态推力线的测量技术研究[C]//中国兵工学会第十四届测试技术年会.[S.l.]: 中国兵工学会,2008.
[17] 张春富. 基于激光跟踪仪的固体火箭发动机推力线测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
[18] 专业便携式3D扫描仪[EB/OL].[2019-11-16].http://www.creaform3d.com.cn/zh/ji-liang-jie-jue-fang/bian-xi-shi-3d-sao-miao-yi.
[19] 赵庆辉, 何坤. 三维激光扫描技术在大飞机上的应用研究[J]. 科技创新与应用, 2019(2): 17-19.
[20] 李二涛, 张国煊, 曾虹. 基于最小二乘的曲面拟合算法研究[J]. 杭州电子科技大学学报, 2009, 29(2): 48-51.
[21] 黄凌潇. 基于三维激光扫描技术的点云滤波与平面拟合算法研究[D]. 西安: 长安大学, 2017.
相似文献/References:
[1]李学焕,李 俊,王立新,等.月球着陆探测器发动机推力线测量及标定[J].火箭推进,2013,39(06):85.
LI Xue-huan,LI Jun,WANG Li-xin,et al.Measurement and calibration of thrust line of lunar lander engine[J].Journal of Rocket Propulsion,2013,39(03):85.
备注/Memo
收稿日期:2019-11-26; 修回日期:2020-02-08
基金项目:国家十三五专用技术预先研究项目(303010301)
作者简介:刘开磊(1984—),男,博士,研究领域为飞行器设计