航天推进技术研究院主办
LIU Zhanyi,HU Jinhua,ZHANG Weijing,et al.Application on combustion chamber of porous medium cooling channel[J].Journal of Rocket Propulsion,2020,46(04):54-59.
多孔介质冷却通道在燃烧室中的应用
- Title:
- Application on combustion chamber of porous medium cooling channel
- 文章编号:
- 1672-9374(2020)04-0054-06
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 为了探索多孔介质冷却通道在液体火箭发动机燃烧室中的应用,采用金属粉末烧结法制备了多孔介质,设计了多孔介质通道的流阻和传热特性测试装置,建立了采用多孔介质冷却通道的燃烧室传热预测模型,对具有不同结构参数的多孔介质进行了研究。结果表明:随着孔隙率的增大,多孔介质通道的流阻逐渐减小,换热能力逐渐下降; 基于传热模型的预测结果与试验有一定偏差,最大达到25%; 相较铣槽通道,多孔介质冷却通道能够在燃烧室中获得更好的热防护效果。
- Abstract:
- To investigate the adaptability of porous medium cooling channel in liquid rocket engine combustor,porous medium was manufactured by the method of metal powder sintering. Test devices about flow resistance and heat transfer characteristics of porous medium channel were designed and built,meanwhile,heat transfer prediction model of combustion chamber adopted porous medium channel was established and porous medium channels with different structural parameters were involved in this paper. Results from the research are as follows. The flow resistance and heat transfer intensity of porous medium channel decrease as the void fraction of porous medium increases. The prediction based on heat transfer model has some deviations with the experimental results. The maximum deviation is about 25%. Compared with milled channel,better thermal protection effect could be obtained with porous medium cooling channel in combustion chamber.
参考文献/References:
[1] 朱成财,韩伟,于忻立,等. 氧化亚氮基单元复合推进剂技术研究述评[J]. 火箭推进,2016,42(2): 79-85.ZHU C C,HAN W,YU X L,et al. Review of nitrous-oxide-based composite monopropellants technology[J]. Journal of Rocket Propulsion,2016,42(2): 79-85.
[2] 张锋,杨伟东,胡洪波,等. 氧化亚氮/乙烯推进剂预混燃烧特性试验研究[J]. 火箭推进,2019,45(3): 41-47.ZHANG F,YANG W D,HU H B,et al. Experimental investigation of premixed combustion characteristics of N2O/C2H4 propellants[J]. Journal of Rocket Propulsion,2019,45(3): 41-47.
[3] VOZOFF M,MUNGAS G.NOFBXTM: a non-toxic,"green" propulsion technology with high performance and low cost[R]. AIAA 2012-5235.
[4] WERLING L,HAUK A. Pressure drop measurement of porous materials: flashback arrestors for a N2O/C2H4 premixed green propellant[R]. AIAA 2016-5094.
[5] 郑坤灿,温治,王占胜,等. 前沿领域综述: 多孔介质强制对流换热研究进展[J]. 物理学报,2012,61(1): 532-542.
[6] 王晶钰,刘衍,杨剑,等. 颗粒无序堆积床内颗粒-流体对流传热系数的研究[J]. 工程热物理学报,2016,37(10): 2202-2205.
[7] 黄寓理,姜培学,胥蕊娜. 气体在微细多孔介质中的流动阻力研究[J]. 工程热物理学报,2009,30(8): 1360-1362.
[8] 胥蕊娜,姜培学. 流体在微多孔介质内对流换热实验研究[J]. 工程热物理学报,2008,29(8): 1377-1379.
[9] 常焕静. 规则排列多孔介质通道内流体流动和换热的数值研究[D]. 大连: 大连理工大学,2016.
[10] HOU B L,YE R M,HUANG Y Q,et al. A CFD model for predicting the heat transfer in the industrial scale packed bed[J]. Chinese Journal of Chemical Engineering,2018,26(2): 228-237.
[11] 孙得川,曹梦成,刘俊,等. 颗粒无序分布的堆积床内部流动与传热分析[J]. 推进技术,2018,39(3): 612-618.
[12] 张尉然,赵斌. 多孔介质强迫对流换热及研究进展[J]. 河北理工大学学报(自然科学版),2009,31(4): 11-13.
[13] 钱维扬,潘阳,彭招. 金属多孔介质泡沫自然对流换热实验研究[J]. 制冷学报,2017,38(2): 17-21.
[14] 骆雄飞. 局部非热平衡条件下多孔介质通道中对流换热的研究[D]. 武汉: 华中科技大学,2014.
[15] 杨剑,王劲,步珊珊,等. 颗粒有序堆积多孔介质对流换热实验研究[J]. 工程热物理学报,2012,33(5): 851-855.
[16] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress,1952,48(2):89-94.
[17] 景思睿,张鸣远. 流体力学[M]. 西安: 西安交通大学出版社,2001.
[18] 刘国球. 液体火箭发动机原理[M].北京:宇航出版社,1993.
[19] DWIVEDI P N,UPADHYAY S N. Particle-fluid mass transfer in fixed and fluidized beds[J]. Industrial & Engineering Chemistry Process Design and Development,1977,16(2): 157-165.
[20] 杨立军,富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社,2013.
备注/Memo
收稿日期:2019-10-13; 修回日期:2019-11-15
基金项目:液体火箭发动机技术重点实验室基金(6142704180206)
作者简介:刘占一(1985—),男,博士,高级工程师,研究领域为液体火箭发动机技术