PDF下载 分享
[1]任蒙飞,席文雄,罗世彬,等.粉末燃料冲压发动机头部组织掺混流动数值模拟[J].火箭推进,2020,46(05):35-41.
 REN Mengfei,XI Wenxiong,LUO Shibin,et al.Numerical simulation of mixing flow in the head of powder fuel ramjet[J].Journal of Rocket Propulsion,2020,46(05):35-41.
点击复制

粉末燃料冲压发动机头部组织掺混流动数值模拟

参考文献/References:

[1] GOROSHIN S, HIGGINS A, LEE J.Powdered magnesium-carbon dioxide propulsion concepts for Mars missions[C]//35th Joint Propulsion Conference and Exhibit.Los Angeles, CA, USA.Reston, Virigina: AIAA, 1999: 2408.
[2] FOOTE J P, LITCHFORD R J.Powdered magnesium-carbon dioxide rocket combustion technology for in situ mars propulsion[Z].2007.
[3] GOROSHIN S, HIGGINS A, KAMEL M.Powdered metals as fuel for hypersonic ramjets[C]//37th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2001.
[4] ONERA.Ramjet, scramjet and PDE-an introduction[Z].2002.
[5] MILLER T, HERR J.Green rocket propulsion by reaction of Al and Mg powders and water[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 2004.
[6] ABBUD-MADRID A, MODAK A, BRANCH M C, et al.Combustion of magnesium with carbon dioxide and carbon monoxide at low gravity[J].Journal of Propulsion and Power, 2001, 17(4): 852-859.
[7] SHAFIROVICH E, SHIRYAEV A A, GOLDSHLEGER U I.Magnesium and carbon dioxide-a rocket propellant for Mars missions[J].Journal of Propulsion and Power, 1993, 9(2): 197-203.
[8] SHAFIROVICH E, VARMA A.Metal-CO2 propulsion for Mars missions: current status and opportunities[J].Journal of Propulsion and Power, 2008, 24(3): 385-394.
[9] 韩超.粉末冲压发动机燃料供应系统研究[D].长沙: 国防科学技术大学, 2006.
[10] 孔龙飞, 夏智勋, 胡建新, 等.粉末燃料供应装置中增设扰流锥体数值模拟研究[J].火箭推进, 2012, 38(2): 56-62.
KONG L F, XIA Z X, HU J X, et al.Numerical investigation of fluid disturbing cone added in powdered fuel feeding system[J].Journal of Rocket Propulsion, 2012, 38(2): 56-62.
[11] 刘一.金属粉末燃料供应与燃烧的数值研究[D].哈尔滨: 哈尔滨工程大学, 2015.
[12] 许一楠.金属粉末燃料发动机燃料供应系统研究[D].哈尔滨: 哈尔滨工程大学, 2018.
[13] 杨晋朝.粉末燃料冲压发动机内镁颗粒群着火燃烧特性研究[D].长沙: 国防科学技术大学, 2013.
[14] 杨晋朝, 夏智勋, 胡建新, 等.粉末燃料高效装填技术研究[J].固体火箭技术, 2013, 36(1): 37-44.
[15] 刘龙.镁硼混合粉末燃料冲压发动机点火自维持燃烧特性研究[D].长沙: 国防科学技术大学, 2014.
[16] 申慧君, 夏智勋, 胡建新, 等.粉末燃料冲压发动机自维持稳定燃烧试验研究[J].固体火箭技术, 2009, 32(2): 145-149.
[17] 申慧君, 夏智勋, 胡建新, 等.粉末燃料冲压发动机燃烧室两相流数值模拟[J].固体火箭技术, 2007, 30(6): 474-477.
[18] 孙海俊, 胡春波, 徐义华.粉末推进剂流化过程及高压流化机制分析[J].推进技术, 2018, 39(12): 2853-2862.
[19] 张虎, 胡春波, 孙海俊, 等.稠密气固两相流颗粒质量流量测量方法研究[J].固体火箭技术, 2015, 38(1): 136-140.
[20] SUN H J, HU C B, ZHANG T, et al.Experimental investigation on mass flow rate measurements and feeding characteristics of powder at high pressure[J].Applied Thermal Engineering, 2016, 102: 30-37.
[21] SUN H J, HU C B, ZHU X F, et al.Experimental investigation on incipient mass flow rate of micro aluminum powder at high pressure[J].Experimental Thermal and Fluid Science, 2017, 83: 231-238.
[22] 陈静敏, 李志永, 王登云, 等.旁侧突扩加热器燃烧性能研究[J].推进技术, 2013, 34(12): 1677-1681.
[23] 赵春宇, 李斌, 鞠玉涛.环向进气固体火箭冲压发动机补燃室流场数值模拟[J].弹箭与制导学报, 2008, 28(2): 136-138.
[24] 郑凯斌, 陈林泉, 张胜勇.中心进气式固体火箭冲压发动机试验研究[J].固体火箭技术, 2007, 30(2): 124-127.
[25] 王希亮, 孙振华.头部两侧和单侧进气对固冲发动机燃烧影响[J].现代防御技术, 2016, 44(2): 68-73.
[26] 王希亮, 孙振华, 贺永杰, 等.头部两侧进气固冲发动机补燃室内流场研究[J].航空兵器, 2011(5): 51-55.
[27] 王金金, 查柏林, 张炜, 等.进气道结构对固体冲压发动机补燃室燃烧及内壁流场的影响[J].北京航空航天大学学报, 2019, 45(5): 989-998.
[28] 胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙: 国防科学技术大学, 2006.
[29] VANKA S, CRAIG R, STULL F.Mixing, chemical reaction and flow field development in ducted rockets[C]//21st Joint Propulsion Conference.Reston, Virigina: AIAA, 1985: 1271.
[30] KOPCHENOV V, LOMKOV K.The enhancement of the mixing and combustion processes in supersonic flow applied to scramjet engine[C]//28th Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1992.

备注/Memo

收稿日期:2020-03-04; 修回日期:2020-04-20
基金项目:西安近代化学研究所开放合作创新基金(748030030)
作者简介:任蒙飞(1994—),男,硕士,研究领域为粉末燃料冲压发动机
通信作者:席文雄(1984—),男,博士,研究领域为超燃冲压发动机燃烧过程技术

更新日期/Last Update: 2020-10-20