航天推进技术研究院主办
CAI Jia,LI Zijie,HUANG Hexia,et al.Numerical study on the flow characteristics of ejector nozzle with wide-speed range under cruise state[J].Journal of Rocket Propulsion,2020,46(06):22-29.
宽速域引射喷管巡航状态流动特性仿真
- Title:
- Numerical study on the flow characteristics of ejector nozzle with wide-speed range under cruise state
- 文章编号:
- 1672-9374(2020)06-0022-08
- Keywords:
- ejector nozzle with wide speed range; shear layer; ejecting coefficient; thrust coefficient
- 分类号:
- V236
- 文献标志码:
- A
- 摘要:
- 为了获得宽速域引射喷管在巡航状态下的流动特性,设计了工作范围为马赫数0~4的引射喷管,仿真分析了巡航状态4 Ma其内部的典型流动结构,并重点研究了引射系数(次主流流量比和总温比平方根的乘积)对引射喷管流动以及推力性能的影响规律。研究结果表明:巡航状态下,引射喷管内部的流动结构主要由主/次流剪切层、激波所组成,沿着激波方向,激波逐渐增强; 引射喷管内部的剪切层存在“附壁”和“脱体”两种典型状态。随着引射系数的增加,剪切层从“附壁”状态切换至“脱体”状态,并且管内的激波强度呈现出逐渐减弱的趋势,推力系数呈现出先增加后降低的趋势。当引射系数在0.006~0.06时,引射喷管的推力系数可达到0.95以上。
- Abstract:
- To obtain the flow characteristics of an ejector nozzle under the cruise state, an ejector nozzle operating in the range of Mach number 0~4 is designed.The typical flow features under the 4 Ma cruise state are analyzed, and the effects of ejecting coefficient, which is defined as the product of the square root of total-temperature and the flow ratio between the secondary flow and the primary flow, on the flow structure as well as the thrust performance are studied emphatically.The results indicate that the main flow structure inside the ejector nozzle is mainly composed of the shock wave and the shear layer between the main flow and secondary flow under the cruise state.The shock gets intensified gradually along the shock direction.The shear layer inside the ejector nozzle has two typical states of “attached to the surface” and “detached from the surface”.As the ejecting coefficient increases, the shear layer transforms from the state of “attached to the surface” to the other one, and the shock strength in the tube shows a gradual weakening trend, while the thrust coefficient increases first and then decreases.When the ejecting coefficient is between 0.006 and 0.06, the thrust coefficient is higher than 0.95.
参考文献/References:
[1] 王占学,张明阳,张晓博,等.变循环涡扇冲压组合发动机发展现状及关键技术分析[J].推进技术,2020,41(9): 1921-1934.
[2] 徐惊雷.超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J].推进技术,2018,39(10): 2236-2251.
[3] KOJIMA T,TAGUCHI H,KOBAYASHI H,et al.Design and fabrication of variable nozzle for precooled turbojet engine[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference.Reston,Virigina: AIAA,2009.
[4] MIZOBATA K,KIMURA H,SUGIYAMA H.Conceptual design of flight demonstrator vehicles for the ATREX engine[R].AIAA 2003-7028.
[5] TAGUCHI H,FUTAMURA H,SHIMODAIRA K,et al.Design study on hypersonic engine components for TBCC space planes[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies.Reston,Virigina: AIAA,2003.
[6] 黄河峡,谭慧俊,周唯阳,等.一种带中心体的TBCC可调喷管的设计与仿真[J].南京航空航天大学学报,2013,45(5): 658-664.
[7] HARDY J M,DELERY J.Present possibilities for a theoreticalstudy of a supersonic ejector nozzle[R].NASA TT F-9870.
[8] SMELTZER D B,SMITHT R H,CUBBISON R W.Wind tunnel and flight performance of the YF—12 inlet system[J].Journal of Aircraft,1975,12(3): 182-187.
[9] BRESNAHAN D L.Performance of an aerodynamically positioned auxiliary inlet ejector nozzle at Mach numbers from 0 to 2.0[R].NASA TM X-2023.
[10] MERLIN P.Design and development of the blackbird: challenges and lessons learned[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston,Virigina: AIAA,2009.
[11] ORDONEZ G,GEORGES M.Ejector pumping and cooling correlations applicable to aircraft exhaust systems[C]//Aircraft Design and Operations Meeting.Reston,Virigina: AIAA,1991.
[12] CANDEL S.Concorde and the future of supersonic transport[J].Journal of Propulsion and Power,2004,20(1): 59-68.
[13] BRADSHAW P,FERRISS D H,JOHNSON R F.Turbulence in the noise-producing region of a circular jet[J].Journal of Fluid Mechanics,1964,19(4): 591-624.
[14] 张可心.一体化条件下组合发动机引射喷管的设计及其流动机理研究[D].南京:南京航空航天大学,2020.
[15] 黄河峡,张可心,谭慧俊,等.带第三流路辅助进气的引射喷管流动特性研究[J].推进技术,2020(12):2729-2738.
[16] 张留欢,王君,马元,等.组合循环发动机轴对称环形可调喷管方案研究[J].火箭推进,2018,44(6): 14-20.
ZHANG L H,WANG J,MA Y,et al.Study on adjustable axisymmetric annular nozzle of combined cycle propulsion system[J].Journal of Rocket Propulsion,2018,44(6): 14-20.
[17] BARIN I.纯物质热化学数据手册[M].程乃良,译.北京: 科学出版社,2003.
[18] ANDERSON B H.Assessment of an analytical procedure for predicting supersonic ejector nozzle performance[EB/OL].1974.
[19] CHOW W L,ADDY A L.Interaction between primary and secondary streams of supersonic ejector systems and their performance characteristics[J].AIAA Journal,1964,2(4): 686-695.
[20] 周唯阳.串联布局TBCC可调喷管的设计、仿真与实验研究[D].南京: 南京航空航天大学,2012.
备注/Memo
收稿日期:2020-10-03; 修回日期:2020-11-08 基金项目:国家自然科学基金(51906104); 南京工业职业技术大学科研基金项目(901050617YK402); 江苏省自然科学基金(BK20190385) 作者简介:蔡佳(1988—),女,博士生,讲师,研究领域为飞行器进/排气技术