航天推进技术研究院主办
LIU Lin,FANG Yuliang,WU Junmei,et al.Investigation on flow and heat transfer of high temperature and high pressure hydrogen in triangular grooves and tubes[J].Journal of Rocket Propulsion,2020,46(06):35-44.
高温高压氢气在三角凹槽及管内流动换热研究
- Title:
- Investigation on flow and heat transfer of high temperature and high pressure hydrogen in triangular grooves and tubes
- 文章编号:
- 1672-9374(2020)06-0035-10
- Keywords:
- hydrogen; flow and heat transfer; triangular groove; numerical simulation; high temperature and high pressure
- 分类号:
- V439+.5
- 文献标志码:
- A
- 摘要:
- 采用数值模拟方法对高温高压条件下氢气在均匀热流密度加热的长直圆管道和带三角凹槽强化圆管内的流动换热特性进行了研究,模拟中考虑了氢气的物性随温度和压力的变化,湍流模型采用SST k—ω模型。该模型的分析结果与相关文献圆形通道内的实验数据吻合度较高。分析结果表明,氢气在通道中的流动属于亚音速湍流,冷却通道壁面温度沿轴向先逐渐上升在靠近出口时略微下降; 圆管内壁上的三角凹槽作为扰流元对氢气流动时的强化换热作用明显,同时增加了流动阻力; 增大槽深、减小凹槽间距和非对称三角凹槽使得综合换热性能降低; 内凹型带三角凹槽强化圆管的强化换热能力优于外凸型。
- Abstract:
- Under high temperature and high pressure conditions, the flow and heat transfer characteristics of hydrogen in long straight tubes heated by the uniform heat flux and triangular fluted enhanced tubes were studied by the numerical simulation method.The change of thermophysical properties of hydrogen with temperature and pressure was considered in the simulation, and the SST k-ω turbulence model was adopted.The numerical results of this model are in good agreement with the experimental data in the circular channel of related literature.The results show that the flow of hydrogen in the cooling channel is subsonic turbulence, and the wall temperature of the cooling channel gradually increases along the axial direction and then slightly decreases near the outlet.The triangular groove on the inner wall of the circular tube as the turbulator has an obvious effect on enhancing the heat transfer but increasing the flow resistance.Increasing groove depth, decreasing groove spacing and asymmetric triangular groove reduce the overall heat transfer performance.The enhanced heat transfer performance of the inward triangular fluted enhanced tube is better than that of the outward triangular fluted enhanced tube.
参考文献/References:
[1] 廖宏图.核热推进技术综述[J].火箭推进,2011,37(4):1-11.
LIAO H T.Overview of nuclear thermal propulsion technologies[J].Journal of Rocket Propulsion,2011,37(4):1-11.
[2] 张郁.电推进技术的研究应用现状及其发展趋势[J].火箭推进,2005,31(2):27-36.
ZHANG Y.Current status and trend of electric propulsion technology development and application[J].Journal of Rocket Propulsion,2005,31(2):27-36.
[3] 苏著亭,杨继材,柯国土.空间核动力[M].上海: 上海交通大学出版社,2016.
[4] 何伟锋,向红军,蔡国飙.核火箭原理、发展及应用[J].火箭推进,2005,31(2):37-43.
HE W F,XIANG H J,CAI G B.The fundamentals,developments and applications of nuclear rocket propulsion[J].Journal of Rocket Propulsion,2005,31(2):37-43.
[5] FITTJE J E.Conceptual engine system design for NERVA derived 66.7KN and 111.2KN thrust nuclear thermal rockets[C]//AIP Conference Proceedings.Albuquerque,New Mexico:AIP,2006.
[6] 廖宏图.空间核动力技术概览与发展脉络初探[J].火箭推进,2016,42(5):58-65.
LIAO H T.Survey and venation analysis on space nuclear power[J].Journal of Rocket Propulsion,2016,42(5):58-65.
[7] MCCARTHY J R,WOLF H.Forced convection heat transfer to gaseous hydrogen at high heat flux and high pressure in a smooth,round,electrically heated tube[J].ARS Journal,1960,30(4):423-425.
[8] TAYLOR M F.Experimental local heat-transfer and average friction data for hydrogen and helium flowing in a tube at surface temperatures up to 5600 R[Z].1964.
[9] HESS H L,KUNZ H R.A study of forced convection heat transfer to supercritical hydrogen[J].Journal of Heat Transfer,1965,87(1):41-46.
[10] LYON L L.Performance of(U,Zr)C-graphite(composite)and of(U,Zr)C(carbide)fuel elements in the Nuclear Furnace 1 test reactor[R].Office of Scientific and Technical Information(OSTI),1973.
[11] APPEL B.Multiphysics design and simulation of a tungsten-cermet nuclear thermal rocket[D].Texas: Texas A & M University,2012.
[12] SINGH S B.A numerical study of high temperature and high velocity gaseous hydrogen flow in a cooling channel of a NTR core[D].Texas: University of New Orleans,2013.
[13] AKYUZLU K M.Numerical study of high-temperature and high-velocity gaseous hydrogen flow in a cooling channel of a nuclear thermal rocket core[J].Journal of Nuclear Engineering and Radiation Science,2015,1(4):041006.
[14] 艾青,王帅,吴家欢,等.核热推进冷却通道热工特性影响因素研究[J].工程热物理学报,2018,39(12):2745-2748.
[15] 房玉良,秦浩,王成龙,等.高温、高流速氢气在圆管内流动换热特性研究[J].原子能科学技术,2020,54(10):1762-1770.
[16] GOULD D W,HOFF B W,YOUNG M P,et al.Numerical analysis of a single minichannel within a high-temperature hydrogen heat exchanger for beamed energy propulsion applications[C]//Proceedings of ASME 2013 Heat Transfer Summer Conference.Minneapolis,Minnesota:ASME,2013.
[17] JI Y,SHI L,SUN J.Numerical investigation of convective heat transfer to supercritical hydrogen in a straight tube[C]//Proceedings of 2017 25th International Conference on Nuclear Engineering.Shanghai:[s.n.],2017.
[18] JI Y,SUN J,SHI L.Numerical investigation of convective heat transfer to supercritical pressure hydrogen in a straight tube[J].Journal of Nuclear Engineering and Radiation Science,2018,4(3):031012.
[19] MCCARTY R D,HORD J,RODER H M.Selected properties of hydrogen(engineering design data)[R].NASA-SP-3089,1981.
[20] 林宗虎.强化传热及其工程应用[M].北京: 机械工业出版社,1987.
相似文献/References:
[1]刘朝晖,宋晨阳,陈 强,等.吸热型碳氢燃料再生冷却性能评估方法[J].火箭推进,2020,46(02):15.
LIU Zhaohui,SONG Chenyang,CHEN Qiang,et al.Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel[J].Journal of Rocket Propulsion,2020,46(06):15.
[2]刘朝晖,陈雪娇,蒋榕培.超高参数火箭煤油在小通道圆管内的流动换热特性[J].火箭推进,2024,50(05):114.[doi:10.3969/j.issn.1672-9374.2024.05.011]
LIU Zhaohui,CHEN Xuejiao,JIANG Rongpei.Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions[J].Journal of Rocket Propulsion,2024,50(06):114.[doi:10.3969/j.issn.1672-9374.2024.05.011]
备注/Memo
收稿日期:2020-07-09; 修回日期:2020-09-22 基金项目:国家自然科学基金联合基金资助项目(U1967203) 作者简介:刘林(1995—),男,硕士,研究领域为核热推进 通信作者:武俊梅(1966—),女,博士,教授,研究领域为强化传热、传质