航天推进技术研究院主办
WANG Dan,ZHOU Chenchu,CHEN Hongyu,et al.Numerical simulation of partially cracked kerosene rotating detonation engine[J].Journal of Rocket Propulsion,2020,46(06):52-59,68.
部分裂解煤油的旋转爆震发动机数值模拟
- Title:
- Numerical simulation of partially cracked kerosene rotating detonation engine
- 文章编号:
- 1672-9374(2020)06-0052-08
- Keywords:
- rotating detonation engine; pre-heating; detonation combustion; kerosene crack; engine performance evaluation
- 分类号:
- V231.2
- 文献标志码:
- A
- 摘要:
- 采用液态煤油作为燃料的旋转爆震发动机具有结构简单、性能高、推进剂可长期贮存的优势,但存在煤油起爆困难的问题。以煤油—空气作为推进剂的旋转爆震发动机为研究对象,研究通过预先加热使得煤油部分裂解再进行点火的起爆过程。建立部分裂解煤油化学反应模型,开展燃烧室内的点火起爆过程仿真分析,计算结果表明,在点火起爆的初始阶段爆震波的形成和发展具有一定的不确定性,进入燃烧室的燃料组分对形成稳定爆震波所需的时间及爆震波最终的传播方向均有影响。裂解率的提升可能导致燃烧区发生缓燃,使得形成稳定爆震波的时间延后。发动机稳定工作时,不同裂解率条件下旋转爆震波传播频率均为7 500 Hz,爆震波峰值压力2.3 MPa,发动机比冲在不同周期略有起伏,平均比冲均维持在1 340 m/s。
- Abstract:
- The rotary detonation engine using liquid kerosene as fuel has the advantages of simple structure, high performance and long-term storage of propellant, but it is difficult to initiate kerosene detonation. Taking the rotating detonation engine with kerosene-air as research object, the ignition process of a rotating detonation engine under pre-heating mode which leads to kerosene cracking was putted out. The chemical reaction model of partial cracking kerosene was putted out and the ignition process in the combustion chamber was simulated. The results show that the formation and development of detonation wave in the initial stage of ignition have uncertainty. The fuel components entering the combustion chamber have effect on the time required for building a stable detonation wave and the final propagation direction of the detonation wave. Increasing cracking rate of kerosene may result in slow combustion in the zone which will delay the formation of stable detonation waves. The frequency of the rotational detonation wave propagation is almost 7 500 Hz and peak pressure of detonation wave is almost 2.3 MPa under the condition of different cracking rates during the engine steady operation time. The specific impulse of engine varies slightly during different period and the average specific impulse is almost 1 340 m/s under the condition of different cracking rates.
参考文献/References:
[1] 冯子轩,王爱峰,姚轩宇,等.爆震发动机研究进展[J].燃气涡轮试验与研究,2018,31(4): 46-52.
[2] 马虎,谢宗齐,邓利,等.旋转爆震发动机轴向脉冲爆震模态的实验研究[J].实验流体力学,2019,33(4): 33-38.
[3] 刘世杰,刘卫东,林志勇,等.连续旋转爆震波传播过程研究(Ⅰ): 同向传播模式[J].推进技术,2014,35(1): 138-144.
[4] 王健平,周蕊,武丹.连续旋转爆轰发动机的研究进展[J].实验流体力学,2015,29(4): 12-25.
[5] 李自然,林志勇,韩旭.超声速斜爆震发动机起爆过程研究综述[J].火箭推进,2013,39(3): 1-8.
LI Z R,LIN Z Y,HAN X.Investigation for initiation process of supersonic oblique detonation engine[J].Journal of Rocket Propulsion,2013,39(3): 1-8.
[6] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonations[J].Journal of Propulsion and Power,2006,22(6): 1204-1216.
[7] ST GEORGE A C,DRISCOLL R B,MUNDAY D E,et al.Development of a rotating detonation engine facility at the university of Cincinnati[C]//53rd AIAA Aerospace Sciences Meeting.Kissimmee,Florida.Reston,Virginia: AIAA,2015.
[8] DEBARMORE N D,KING P I,SCHAUER F R,et al.Nozzle guide vane integration into rotating detonation engine[R].AIAA 2013-1030.
[9] THEUERKAUF S,KING P,SCHAUER F,et al.Thermal management for a modular rotating detonation engine[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston,Virigina: AIAA,2013.
[10] WOLAGN'SKI P.Detonative propulsion[J].Proceedings of the Combustion Institute,2013,34(1): 125-158.
[11] NAPLES A,HOKE J,KARNESKY J,et al.Flowfield characterization of a rotating detonation engine[R].AIAA 2013-0278.
[12] PAPALEXANDRIS M V.A numerical study of wedge-induced detonations[J].Combustion and Flame,2000,120(4): 526-538.
[13] SCHWER D,KAILASANATH K.Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J].Proceedings of the Combustion Institute,2013,34(2): 1991-1998.
[14] ZHDAN S A,BYKOVSKII F A,VEDERNIKOV E F.Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J].Combustion,Explosion,and Shock Waves,2007,43(4): 449-459.
[15] HISHIDA M,FUJIWARA T,WOLANSKI P.Fundamentals of rotating detonations[J].Shock Waves,2009,19(1): 1-10.
[16] DAVIDENK O D M,KUDRYAVTSEV A N,GOKALP I.Numerical simulation of H2/O2 continuous spin detonation with a detailed chemical mechanism[C]//21st ICDERS.Poitiers,France:[s.n.],2007.
[17] EUDE Y,DAVIDENKO D M,GÖKALP I.Use of the adaptive mesh refinement for 3D simulations of a CDWRE(Continuous Detonation Wave Rocket Engine)[R].AIAA 2011-2236.
[18] 刘世杰.连续旋转爆震波结构、传播模态及自持机理研究[D].长沙: 国防科学技术大学,2012.
[19] 邵业涛,刘勐,王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术,2009,30(6): 717-721.
[20] 马虎,武晓松,王栋,等.旋转爆震发动机数值研究[J].推进技术,2012,33(5): 820-825.
[21] 黄生洪,徐胜利,刘小勇.煤油超燃冲压发动机两相流场数值研究(Ⅲ):煤油在超燃流场中的多步化学反应特征[J].推进技术,2005,26(2): 101-105.
[22] 董刚,蒋勇,陈义良,等.大型气相化学动力学软件包CHEMKIN及其在燃烧中的应用[J].火灾科学,2000,9(1): 27-33.
备注/Memo
收稿日期:2019-08-06; 修回日期:2020-01-20 基金项目:液体火箭发动机技术重点实验室基金项目(61427040102) 作者简介:王丹(1989—),女,硕士,研究领域为热过程仿真