航天推进技术研究院主办
CAI Qiang,ZHAO Xiaoning,LI Xintian,et al.Comparative analysis on multi-type domes of filament-wound composite pressure vessels[J].Journal of Rocket Propulsion,2020,46(06):90-96.
纤维缠绕复合材料压力容器多型封头对比分析
- Title:
- Comparative analysis on multi-type domes of filament-wound composite pressure vessels
- 文章编号:
- 1672-9374(2020)06-0090-07
- Keywords:
- composite material; pressure vessel; dome; grid theory; geodesic theory
- 分类号:
- V421.4
- 文献标志码:
- A
- 摘要:
- 纤维缠绕复合材料容器在航天领域得到广泛应用,为满足复材容器快速方案设计需求,对比分析了缠绕线型和封头子午线类型对复材容器性能的影响,通过建立简化的复材容器几何参数模型,基于成熟可靠的网格理论和测地线理论,详细推导了螺旋缠绕封头、螺旋缠绕椭球封头、平面缠绕封头和平面缠绕椭球封头等4种封头的控制方程。对应每种封头,均进行实例计算以验证设计方法的正确性,结果表明:相同纤维缠绕线型的子午线、缠绕角、壁厚、纤维应力以及综合性能参数等设计结果相似,推荐采用螺旋缠绕椭球封头或平面缠绕椭球封头以避免子午线曲率拐点,同时有利于加工制造。
- Abstract:
- Filament-wound Composite Pressure Vessels(FCPV)has been widely used in the aerospace field.The main purpose of this paper is to meet the requirements of rapid concept design of FCPV and compare the effects of winding pattern and meridian type of domes on the properties of FCPV.A simplified geometric parameter model of FCPV was established.Based on the mature and reliable grid theory and geodesic theory, four types of domes(helical winding, helical winding ellipsoid, polar winding, polar winding ellipsoid)were studied.The control equations of each type of dome were derived.According to each type of dome, case calculation was carried out to verify the correctness of the design method.The result analysis shows that the design results of meridian, winding angle, wall thickness, fiber stress and pV/W of the same winding pattern are similar.Ellipsoid dome is recommended to avoid the curvature inflection point of meridian, which is also conducive to processing and manufacturing.The research results can provide reference for the design and selection of FCPV.
参考文献/References:
[1] 王婉君,张鹏,贺政豪,等.碳纤维复合材料压力容器的研究进展[J].现代化工,2020,40(1): 68-71.
[2] 冯雪,沈俊,田桂,等.复合材料压力容器在航天领域的应用研究[J].火箭推进,2014,40(4): 35-42.
FENG X,SHEN J,TIAN G,et al.Research of composite over-wrapped pressure vessels for space application[J].Journal of Rocket Propulsion,2014,40(4): 35-42.
[3] 陈军军,田桂,沈俊,等.“柱形”铝内衬纤维缠绕复合材料气瓶自紧分析[J].火箭推进,2014,40(3): 57-62.
CHEN J J,TIAN G,SHEN J,et al.Analysis on autofrettage of filament-wound composite cylinder[J].Journal of Rocket Propulsion,2014,40(3): 57-62.
[4] 晏飞.纤维缠绕/金属内衬复合材料气瓶应力分析[J].火箭推进,2011,37(1): 46-50.
YAN F.Stress analysis of filament-wound composite gas cylinders with metal liner[J].Journal of Rocket Propulsion,2011,37(1): 46-50.
[5] ROSATO D V,GROVE C S.Filament winding: its development,manufacture,applications,and design [M].[S.l.]:Interscience Publishers,1964.
[6] SHIBLEY A M.Filament winding[M]//Handbook of composites.Boston,MA: Springer US,1982: 449-478.
[7] PETERS S T,HUMPHREY W D,FORAL R F.Filament winding composite structure fabrication [M].[S.l.]:SAMPE International Business Office,1991.
[8] ZU L,KOUSSIOS S,BEUKERS A.Design of filament-wound domes based on continuum theory and non-geodesic roving trajectories[J].Composites Part A: Applied Science and Manufacturing,2010,41(9): 1312-1320.
[9] FUKUNAGA H,UEMURA M.Optimum design of helically wound composite pressure vessels[J].Composite Structures,1983,1(1): 31-49.
[10] HOJJATI M,SAFAVI ARDEBILI V,HOA S V.Design of domes for polymeric composite pressure vessels[J].Composites Engineering,1995,5(1): 51-59.
[11] 李长鹏,谢淮北,刘力红.纤维缠绕超高压容器承载特性研究[J].兵器材料科学与工程,2019,42(2): 25-30.
[12] 何朋飞.碳纤维缠绕压力容器结构设计及其有限元分析[D].武汉: 武汉工程大学,2018.
[13] 周吉.纤维缠绕压力容器的强度分析和优化设计[D].武汉: 华中科技大学,2015.
[14] 矫维成,王荣国,刘文博,等.纤维缠绕复合材料压力容器封头厚度预测[J].复合材料学报,2010,27(5): 116-121.
[15] 祖磊,穆建桥,王继辉,等.基于非测地线纤维缠绕压力容器线型设计与优化[J].复合材料学报,2016,33(5): 1125-1131.
[16] DE CARVALHO J,LOSSIE M,VANDEPITTE D,et al.Optimization of filament-wound parts based on non-geodesic winding[J].Composites Manufacturing,1995,6(2): 79-84.
[17] KIM C U,KANG J H,HONG C S,et al.Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm[J].Composite Structures,2005,67(4): 443-452.
[18] LIANG C C,CHEN H W,WANG C H.Optimum design of dome contour for filament-wound composite pressure vessels based on a shape factor[J].Composite Structures,2002,58(4): 469-482.
[19] TEW B W.Preliminary design of tubular composite structures using netting theory and composite degradation factors[J].Journal of Pressure Vessel Technology,1995,117(4): 390-394.
[20] 陈汝训.固体火箭发动机设计与研究[M].北京: 宇航出版社,1992.
[21] 周敏,王志辉.纤维缠绕压力容器封头段的网络分析[J].机械制造,2010,48(8): 39-41.
相似文献/References:
[1]廖云龙,吴 剑.基于Riks方法的复合材料贮箱稳定性分析[J].火箭推进,2013,39(05):92.
LIAO Yun-long,WU Jian.Stability analysis based on Riks method for composite material vessel[J].Journal of Rocket Propulsion,2013,39(06):92.
[2]于 建,晏 飞.可重复使用运载器复合材料低温贮箱应用研究[J].火箭推进,2009,35(06):19.
Yu Jian,Yan Fei.Study on application of composite cryogenic tank for reusable launch vehicle[J].Journal of Rocket Propulsion,2009,35(06):19.
[3]穆朋刚,刘文超,杜大华,等.复合材料桁架式机架设计方案[J].火箭推进,2019,45(02):26.
MU Penggang,LIU Wenchao,DU Dahua,et al.Design scheme of composite truss frame[J].Journal of Rocket Propulsion,2019,45(06):26.
[4]张万卿,李洪春,史 勇.挖补法修补复合材料层压板压缩性能[J].火箭推进,2020,46(04):103.
ZHANG Wanqing,LI Hongchun,SHI Yong.Research on compressive properties of composite laminates by patching repair[J].Journal of Rocket Propulsion,2020,46(06):103.
备注/Memo
收稿日期:2020-03-08; 修回日期:2020-05-01 基金项目:国家自然科学基金(11972377) 作者简介:蔡强(1984—),男,博士,高级工程师,研究领域为火箭发动机总体设计及仿真