航天推进技术研究院主办
QIU Hua,HE Youquan,MEN Kai.Numerical study on overexpansion optimization of pulse detonation engine with fluidic nozzle[J].Journal of Rocket Propulsion,2021,47(01):29-35.
流体喷管的脉冲爆震发动机出口过膨胀优化数值研究
- Title:
- Numerical study on overexpansion optimization of pulse detonation engine with fluidic nozzle
- 文章编号:
- 1672-9374(2021)01-0029-07
- Keywords:
- pulse detonation engine; fluidic nozzle; single cycle; numerical simulation; propulsion performance
- 分类号:
- V231.2
- 文献标志码:
- A
- 摘要:
- 在脉冲爆震发动机工作过程中,爆震室压力处于强非定常状态。传统的型面不可调尾喷管与可调尾喷管都无法满足爆震室内压力的高频剧烈变化,进而导致较大的推力损失。为了提升现有脉冲爆震发动机型面不可调增推喷管性能,可以从爆震室中引出爆震燃气,通过无阀自适应控制将该二次流喷射在喷管扩张段,实时调节主流的有效扩张面积比,进而形成流体喷管。针对这种形式的流体喷管,在可爆混合物一定(当量比1.0,初始填充压力为0.1 MPa)的情况下,基于二维数值模拟,研究了不同二次流喷注条件(二次流喷注面积比、位置比)对主流流动状态及发动机推进性能的影响。计算结果表明:二次流的喷注改变了喷管有效流通面积; 二次流在喷管扩张段喷注面积比越大,喷管的冲量提升率越大(相对于基准喷管冲量最大提升率为5.25%); 二次流喷注位置越靠近喷管喉道处,喷管的冲量提升率越高。
- Abstract:
- During the operation of the pulse detonation engine, the pressure of the detonation chamber is in a strong unsteady state. The traditional non-adjustable exhaust nozzle and adjustable exhaust nozzle cannot meet the high-frequency and drastic changes of the pressure inthe detonation chamber, which leads to greater thrust loss. In order to improve the performance of the current fixed-geometry nozzle for the pulse detonation engine,the detonation products extracted from the detonation chamber and named as secondary flow, can be injected into the divergent section of the nozzle by the valveless adaptive control. This is the fluidic nozzle whose effective divergent area ratio can be constantly changed by the secondary flow. Aimed to this type of fluidic nozzle, the flow field in the nozzle and the single-cycle pulse detonation engine influenced by the different injection conditions(such as injection area ratio, position ratio)of the secondary flow were investigated under 2-D numerical simulation while the initial pressure was 1atm, equivalence ratio was 1.0 and the amount of the explosive mixture was fixed. It can be found that the injection of the secondary flow can change the effective flow area of the nozzle, and the larger the injection area ratio of the secondary flow in the divergentsection of the nozzle, the higher the impulse rate of the nozzle is(the maximum increase rate is 5.25% relative to the reference nozzle). Also, the closer the injection position is located to the nozzle throat, the higher the impulse increase rate of the nozzle is.
参考文献/References:
[1] ROY G D,FROLOV S M,BORISOV A A,et al.Pulse detonation propulsion: challenges,current status,and future perspective[J].Progress in Energy and Combustion Science,2004,30(6):545-672.
[2] KUO K K.Principles of combustion[M].2nd ed.Hoboken,New Jersey:[s.n.],2005.
[3] HEISER W H,PRATT D T.Thermodynamic cycle analysis of pulse detonation engines[J].Journal of Propulsion and Power,2002,18(1):68-76.
[4] KAILASANATH K.Recent developments in the research on pulse detonation engines[J].AIAA Journal,2003,41(2):145-159.
[5] QIU H, XIONG C, FAN W.One—dimensional unsteady design method for pulsed detonation engine nozzles[J].Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2014,228(13):2496-2507.
[6] MILLER D N,CATT J A.Conceptual development of fixed—geometry nozzle using fluidic injection for throat area control[R].AIAA 1995-2603,1995.
[7] 王庆伟,刘波,王如根.二元喷管气动喉道控制的数值模拟[J].航空学报,2009,30(2):226-231.
[8] 郭飞飞,王如根,吴培根.二元收—扩喷管气动喉道控制数值模拟[J].航空动力学报,2014,29(10):2303-2310.
[9] 李坤,王如根,郭飞飞,等.二元喷管气动喉道控制性能的仿真研究[J].弹箭与制导学报,2015,35(3):103-106.
[10] LI L,HIROTA M,OUCHI K,et al.Evaluation of fluidic thrust vectoring nozzle via thrust pitching angle and thrust pitching moment[J].Shock Waves,2017,27(1):53-61.
[11] FERLAUTO M,MARSILIO R.Numerical investigation of the dynamic characteristics of a dual—throat—nozzle for fluidic thrust—vectoring[J].AIAA Journal,2017,55(1):86-98.
[12] BROPHY C,DAUSEN D,SMITH L,et al.Fluidic nozzles for pulse detonation combustors[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Nashville,Tennessee: AIAA,2012.
[13] SMITH L R.Fluidically augmented nozzles for pulse detonation engine applications[D].[S.l.]:Monterey California Naval Postgraduate School,2011.
[14] 郑华雷,邱华,熊姹,等.带二次流增推喷管的脉冲爆震发动机推进性能分析[J].推进技术,2014,35(7):1002-1008.
[15] 邱华,龚婷婷,熊姹,等.带二次流增推尾喷管的脉冲爆震发动机数值模拟研究[J].西北工业大学学报,2015,33(2):271-277.
相似文献/References:
[1]孙亮,白少卿,罗大亮.脉冲爆震发动机旋转阀技术研究[J].火箭推进,2016,42(04):41.
SUN Liang,BAI Shaoqing,LUO Daliang.Technology research of rotary valve for pulse detonation engine[J].Journal of Rocket Propulsion,2016,42(01):41.
备注/Memo
收稿日期:2020-07-09
基金项目:国家自然科学基金(51676164); 陕西省自然科学基础研究计划(2020JZ-09)
作者简介:邱华(1979—),男,博士,教授,研究领域为爆震推进应用基础。