航天推进技术研究院主办
ZHOU Chenchu,LI Shuxin,CHEN Hongyu,et al.Simulation on water hammer during liquid rocket engine shutdown[J].Journal of Rocket Propulsion,2021,47(01):70-75.
液体火箭发动机关机水击特性仿真
- Title:
- Simulation on water hammer during liquid rocket engine shutdown
- 文章编号:
- 1672-9374(2021)01-0070-06
- 分类号:
- V430
- 文献标志码:
- A
- 摘要:
- 关机水击是引起液体火箭发动机及其试验台故障的常见现象之一。为获得关机水击的主要影响规律,采用一维有限体积法建立了发动机关机水击仿真模型,通过地面试验验证了模型的正确性。针对发动机常见设计变量,开展仿真研究,结果表明:水击增量与推进剂流量、流速成正比; 管路足够长时,水击增量与其长度无关,但管路过短时,管路越短,水击增量越小; 局部流阻靠近贮箱有利于降低水击,加快收敛; 阀门作动时间小于半个水击周期时,水击增量等于完全水击值,否则,阀门作动时间越长,水击值越小; 推进剂内注入少量气体,能明显抑制关机水击。
- Abstract:
- Water hammer during shutdown is one of the common phenomena that cause liquid rocket engine or its test bed to fail.To study the characteristics of water hammerduring liquid rocket engine shutdown, simulation models were built based on one-dimensional finite element and the correctness of these models were verified by ground test.On this basis, the influences of common design variables were studied by simulation. The results show that the increment of water hammer is proportional to the flow rate and velocity of propellant.When the pipe is long enough the increment of water hammer is independent of its length, otherwise the shorter the pipe is, the smaller the increment is.The closer the local flow resistance is to the tank, the more favorable it is to reduce water hammer increment and accelerate its convergence.When the valve movement time is less than half of the water hammer cycle, the water hammer increment is equal to complete water hammer value, otherwise the shorter the valve movement time is, the smaller the water hammer will be.The water hammer will be obviously inhibited, while a small amount of gas is injected into the propellant.
参考文献/References:
[1] WYLIE E,STEERER V L.瞬变流[M].清华大学流体传动与控制教研室,译.北京: 水利电力出版社,1983.
[2] 张峥岳,康乃全.轨姿控液体火箭发动机水击仿真模拟[J].火箭推进,2012,38(3):12-16.
ZHANG Z Y,KANG N Q.Simulation of water hammer in liquid rocket engine of orbit and attitude control system[J].Journal of Rocket Propulsion,2012,38(3):12-16.
[3] 董晨钟.水击理论研究[D]. 郑州:郑州大学,2014.
[4] 李文勋[美].水力学中的微分方程及其应用[M].韩祖恒,郑开琪,译.上海: 上海科学技术出版社,1982.
[5] WYLIE E B,STREETER V L,SUO L S.Fluid Transients in Systems[M].New Jersey:Prentice Hall Inc,1993.
[6] 侯咏梅. 水击理论与计算研究[D]. 郑州: 郑州大学, 2003.
[7] RUTH E, AHN H, BAKER R, et al. Advanced liquid rocket engine transient model[C]//26th Joint Propulsion Conference. Orlando, Reston, Virigina: AIAA, 1990.
[8] 陈宏玉,刘红军,刘上.水击问题的Fourier谱方法计算[J].火箭推进,2012,38(3):7-11.
CHEN H Y,LIU H J,LIU S.Spectral—Fourier method for water hammer[J].Journal of Rocket Propulsion,2012,38(3):7-11.
[9] SASSNICK H D,KRUELLE G.Numerical simulation of transients in feed systems for cryogenic rocket engines[C]//31st Joint Propulsion Conference and Exhibit.San Diego,CA,USA,Reston,Virigina: AIAA,1995.
[10] 王珏.YF—73氢氧发动机起动过程分析[D].北京:航天工业总公司第十一研究所,1990.
[11] 林景松,王平阳,高红,等.液体火箭发动机关机水击的数值模拟[J].上海航天,2008,25(3):53-57.
[12] 张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京: 科学出版社,2005.
[13] 刘昆,张育林.一维可压缩流的有限元状态空间模型[J].推进技术,1999,20(5):62-66.
[14] KOLCIO K,HELMICKI A J,JAWEED S.Propulsion system modeling for condition monitoring and control:part Ⅰ theoretical foundation [R].AIAA 1994-3227,1994.
[15] KOLCIO K,HELMICKI A J,JAWEED S.Propusion system modeling for condition monitoring and control:partⅡapplication to the SSME [R].AIAA 1994-3228,1994.
[16]TIJSSELING A S,BERGANT A.Meshless computation of water hammer[C]// Proceedings of 2nd IAHR Interna—tional Meeting of the Workgroup on Cavitation and Dy—namic Problems in Hydraulic Machinery and Systems.Timisoara,Romania: IAHR,2007.
[17] 陈宏玉,刘红军,陈建华,等.Chebyshev超谱粘性法在推进剂供应管路非定常流动分析中的应用[J].推进技术,2012,33(5):804-808.
[18] GUO B Y.Spectral methods and their applications[M].Singapore: World Scientific,1998.
[19]LI P F,LEI F P,ZHOU L X,et al.Investigation of real—fluid characteristics in high—pressure liquid rocket engines[C]// 67th International Astronautical Congress(IAC).Guadalajara,Mexico:IAC,2016.
[20] 任孝文,陈宏玉,李平,等.弱可压缩流体与可压缩流体模型的管路水击研究[J].推进技术,2020,41(8):1880-1886.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(01):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(01):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(01):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(01):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(01):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(01):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(01):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(01):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(01):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(01):15.
备注/Memo
收稿日期:2020-09-08
基金项目:国家级重点实验室基金项目(6142704180308)
作者简介:周晨初(1991—),男,硕士,研究领域为液体火箭发动机系统动力学仿真。