航天推进技术研究院主办
LI Qiqi,ZHUANG Jian,WANG Zhichao,et al.Application of conjugate gradient algorithm in vibration signal processing[J].Journal of Rocket Propulsion,2021,47(01):97-100.
共轭梯度算法在振动信号处理中的应用
- Title:
- Application of conjugate gradient algorithm in vibration signal processing
- 文章编号:
- 1672-9374(2021)01-0097-04
- Keywords:
- liquid rocket engine test; conjugate gradient algorithm; vibration signal; simulation analysis
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 为了提高液体火箭发动机试验振动信号频域数据处理的精度,提出了一种基于共轭梯度和AR模型的谱估计算法。该算法计算复杂度低,估计出的谱分辨率高,可以克服传统的经典傅里叶变换功率谱估计算法在信号信噪比降低时不能有效区分相近频率点谱线的问题,解决了传统算法旁瓣泄漏严重的固有缺点。通过对算法在不同信噪比条件下的仿真实验分析与真实试验数据验证,充分表明了此算法在低信噪比条件下,估计的谱仍具有高分辨率的特点。
- Abstract:
- In order to improve the accuracy of frequency-domain data processing of vibration signal in liquid rocket engine test, a spectral estimation algorithm based on conjugate gradient and AR model is proposed.The algorithm has low computational complexity and high estimated spectral resolution, which can overcome the problem that the traditional Fourier transform power spectrum estimation algorithm cannot effectively distinguish the spectral lines of similar frequency points when the signal-to-noise ratio is reduced.In addition, it also solves the inherent shortcoming of the traditional algorithm with serious side leakage.Based on the simulation analysis and test data verification of the algorithm under different signal-to-noise ratio conditions, the estimated spectrum of this algorithm still has the characteristics of high resolution under low signal-to-noise ratio conditions.
参考文献/References:
[1] 郭霄峰.液体火箭发动机试验[M].北京: 中国宇航出版社,2005.
[2] 刘英元,陈海峰,耿直,等.液体火箭发动机振动故障特征信号提取方法[J].火箭推进,2019,45(1):77-82.
LIU Y Y,CHEN H F,GENG Z,et al.Extraction method of characteristic signal for vibration fault of liquid rocket engine[J].Journal of Rocket Propulsion,2019,45(1):77-82.
[3] 孙百红,田川.基于特征频段RMS值的发动机故障实时监测方法[J].火箭推进,2019,45(4):74-78.
SUN B H,TIAN C.The fault real—time monitoring method for engine based on RMS value of characteristic frequency band[J].Journal of Rocket Propulsion,2019,45(4):74-78.
[4] 张贤达.现代信号处理[M].3版.北京: 清华大学出版社,2015.
[5] 张鹏,廖飞.共轭梯度法研究与展望[J].牡丹江师范学院学报(自然科学版),2012(4):10-12.
[6] 胡广书.数字信号处理理论、算法与实现[M].北京: 清华大学出版社,2007.
[7] 刘松强.数字信号处理系统及其应用[M].北京: 清华大学出版社,1996.
[8] 沈福民.自适应信号处理[M].西安: 西安电子科技大学出版社,2001.
[9] LARSSON E G,STOICA P,LI J.Spectral estimation via adaptive filterbank methods: a unified analysis and a new algorithm[J].Signal Processing,2002,82(12):1991-2001.
[10] KAY S M.Modern spectral estimation: theory and application[Z].1988.
[11] HAYKIN S.自适应滤波器原理[M].郑宝玉,译.北京: 电子工业出版社,2003.
[12] STOICA P,LI H B,LI J.Amplitude estimation of sinusoidal signals: survey,new results,and an application[J].IEEE Transactions on Signal Processing,2000,48(2):338-352.
[13] KAY S M.Modern spectral estimation theory and application[Z].1988.
[14] KITSIOS K,SPANIAS A,WELFERT B.Adaptive modified covariance algorithms for spectral analysis[J].Signal Processing,2002,82(5):715-720.
[15] 胡昌华.基于MATLAB 7.x的系统分析与设计——小波分析[M].西安: 西安电子科技大学出版社,1999.
[16] 张志涌.精通MATLAB 6.5版[M].北京: 北京航空航天大学出版社,2003.
[17] 天工在线.MATLAB 2018从入门到精通:实战案例版[M].北京: 中国水利水电出版社,2018.
[18] 宋知用.MATLAB数字信号处理85个实用案例精讲:入门到进阶[M].北京: 北京航空航天大学出版社,2016.
[19] 李德葆,陆秋海.工程振动试验分析[M].北京: 清华大学出版社,2004.
[20] 王凤瑛,张丽丽.功率谱估计及其MATLAB仿真[J].微计算机信息,2006,22(31):287-289.
相似文献/References:
[1]王文龙,耿 直,乔江辉,等.压力传感器静态校准方法改进[J].火箭推进,2012,38(03):80.
WANG Wen-long,GENG Zhi,QIAO Jiang-hui,et al.Improvement of static calibration method for pressure sensors[J].Journal of Rocket Propulsion,2012,38(01):80.
[2]肖培斌.液体火箭发动机试验热电偶传感器测量工艺[J].火箭推进,2009,35(03):61.
Xiao Peibin.Measurement technology of thermocouple sensor
in the liquid rocket engine test[J].Journal of Rocket Propulsion,2009,35(01):61.
[3]李琪琪,叶斌,陈锋,等.液体火箭发动机试验
频率量信号的处理与仿真[J].火箭推进,2008,34(05):39.
Li Qiqi,Ye Bin,Chen Feng,et al.Processing and simulating of frequency signal
in liquid propellant rocket engine test[J].Journal of Rocket Propulsion,2008,34(01):39.
[4]王永忠,王宁.低温阀在液体火箭发动机试验中的应用[J].火箭推进,2004,(01):32.
备注/Memo
收稿日期:2019-08-29
基金项目:航天科技集团宇航动力子领域项目(2020KGW-YY4316Tm)
作者简介:李琪琪(1981—),女,硕士,高级工程师,研究领域为液体火箭发动机试验测量。