PDFÏÂÔØ ·ÖÏí
[1]ÍõºÆÃ÷,Ѧ Ïè,ÕÅÒøÓÂ,µÈ.¿Õ¼ä±Õʽ²¼À׶ÙÑ­»·ÅÔ·µ÷½ÚÌØÐÔ·ÖÎö[J].»ð¼ýÍƽø,2021,47(02):61-67.
¡¡WANG Haoming,XUE Xiang,ZHANG Yinyong,et al.Analysis of bypass regulation characteristics for spaceclosed Brayton cycle system[J].Journal of Rocket Propulsion,2021,47(02):61-67.
µã»÷¸´ÖÆ

¿Õ¼ä±Õʽ²¼À׶ÙÑ­»·ÅÔ·µ÷½ÚÌØÐÔ·ÖÎö

²Î¿¼ÎÄÏ×/References:

[1] ROSEN R, SCHNYERA D. Civilian uses of nuclear reactors in space[J]. Science & Global Security, 1989, 1(1/2): 147-164. [2] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: Intl Atomic Energy Agency, 2005. [3] LYONS V J, GONZALEZ G A, HOUTS M G,et al. Space power and energy storage roadmap[R]. Washington DC: NASA, 2012. [4] GABRIELLI R A, HERDRICH G. Review ofnuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79: 92-113. [5] ÀîÇ¿, Àî¼ÒÎÄ, Íõ¸ê, µÈ. ÐÂÐÍ¿Õ¼ä˫ģʽºËÈÈÍƽøϵͳÈÈÁ¦Ñ§ÐÔÄÜÑо¿[J]. »ð¼ýÍƽø, 2018, 44(6): 21-28.LI Q, LI J W, WANG G, et al. Research on thermodynamic performance of a new aerospace nuclearthermal propulsion system[J]. Journal of Rocket Propulsion, 2018, 44(6): 21-28. [6] BARNETT J W. Nuclear electric propulsion technologies: Overview of the NASA/DOE/DOD nuclear electric propulsion workshop[C]// AIP Conference Proceedings. New Mexico: American Institute of Physics, 1991. [7] ºú¹Å, ÕÔÊØÖÇ. ¿Õ¼äºË·´Ó¦¶ÑµçÔ´¼¼Êõ¸ÅÀÀ[J]. Éî¿Õ̽²âѧ±¨, 2017, 4(5): 430-443. [8] DATAS A,MARTÿ?‚ˆ A. Thermophotovoltaic energy in space applications: Review and future potential[J]. Solar Energy Materials and Solar Cells, 2017, 161: 285-296.[LinkOut] [9] TORO C, LIOR N. Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation[J]. Energy, 2017, 120: 549-564.[LinkOut] [10] MASON L S. A comparison ofBrayton and Stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts[C]//AIP Conference Proceedings. New Mexico: American Institute of Physics, 2001. [11] KOROTEEV A S, ANDIANOV D I, KAREVSKIY A V, et al. Test bench for key components of megawatt class international power and propulsion system ground demonstration[C]// 7th European Conference for Aeronautics and Space Sciences. Milan, Italy: EUCASS 2017. [12] MASON L S. A power conversion concept for theJupiter icy moons orbiter[J]. Journal of Propulsion and Power, 2004, 20(5): 902-910.[LinkOut] [13] BIONDI A, TORO C. Closed Brayton Cycles for Power Generation in Space: Modeling, simulation and exergy analysis[J]. Energy, 2019, 181: 793-802. [14] WRIGHT S A, LIPINSKI R J, VERNON M E, et al. Closed Brayton cycle power conversion systems for nuclear reactors: [R]. Office of Scientific and Technical Information(OSTI), 2006. [15] MASON L S, SCHREIBER J G. A historical review of brayton and stirling power conversion technologies for space applications[C]//2007: 145-153. [16] JOHNSON P K, MASON L S. Initial test results of a dual closed-brayton-cycle power conversion system[EB/OL]. 2007 [17] KOROTEEV A S, KAREVSKIY AV, LOVTSOV A S, et al. Study of operation of power and propulsion system based on closed brayton cycle power conversion unit and electric propulsion[C]// 36th International Electric Propulsion Conference. University of Vienna, Austria:[s.n.], 2019. [18] ·ëÖÂÔ¶, ÕÅê»´º, ¼ªÓî, µÈ. º½ÌìÆ÷ºË¶¯Á¦ÍƽøϵͳÈÈÁ¦Ñ§ÐÔÄÜÑо¿[J]. ÔØÈ˺½Ìì, 2016, 22(6): 797-804. [19] ZHAO H, DENG Q H, HUANG W T, et al. Thermodynamic and economic analysis and multi-objective optimization of supercritical CO2 brayton cycles[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(8): 081602. [20] LIU H Q, CHI Z R, ZANG S S. Optimization of a closed Brayton cycle for space power systems[J]. Applied Thermal Engineering, 2020, 179: 115611. [21] MASON LS. Powe conversion concept designed for the Jupiter Icy Moons Orbiter: 20050192432 [R]. NASA Glenn Research Center Cleveland: Research and Technology, 2003. [22] DE OLUMAYEGUN O, WANG M H, KELSALL G. Closed-cycle gas turbine for power generation: a state-of-the-art review[J]. Fuel, 2016, 180: 694-717. [23] ROMANO L F, RIBEIRO GB. Optimal temperature of operation of the cold side of a closed Brayton cycle for space nuclear propulsion[C]// International Nuclear Atlantic Conference. Brazil: [s.n.],2017. [24] TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed brayton cycle space applications[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). San Diego, California.: AIAA, 2006. [25] BARRETT M. Performance expectations of closed brayton-cycle heat exchangers in 100-kWe nuclear space power systems[C]//1st International Energy Conversion Engineering Conference(IECEC). Portsmouth, Virginia: AIAA, 2003. [26] ºÂºÆÈ», ÑîСÓÂ, Íõ½Ý. ÅÔ··§µ÷½Ú¶Ô¸ßÎÂÆøÀä¶Ñ±Õʽ²¼À׶ÙÑ­»·Ë²Ì¬ÌØÐÔÓ°ÏìÑо¿[J]. Ô­×ÓÄÜ¿Æѧ¼¼Êõ, 2016, 50(4): 612-620.

±¸×¢/Memo

ÊÕ¸åÈÕÆÚ:2020-10-11
»ù½ðÏîÄ¿:ÉϺ£ÊпÆѧ¼¼ÊõίԱ»á¿ÆÑмƻ®ÏîÄ¿(19DZ1206502)
×÷Õß¼ò½é:ÍõºÆÃ÷(1985¡ª),ÄÐ,²©Ê¿,Ñо¿ÁìÓòΪ¿Õ¼äÍƽøϵͳ¼°´ó¹¦ÂÊÈȵçת»»¼¼Êõ¡£

¸üÐÂÈÕÆÚ/Last Update: 1900-01-01