航天推进技术研究院主办
LI Shuxin,HU Hongbo,XU Hongwei.Research on detonation wave formation of methane/oxygen detonation wave igniter[J].Journal of Rocket Propulsion,2021,47(03):26-34.
甲烷/氧气爆震波点火器爆震波形成过程
- Title:
- Research on detonation wave formation of methane/oxygen detonation wave igniter
- 文章编号:
- 1672-9374(2021)03-0026-09
- Keywords:
- detonation wave; flame acceleration; methane; liquid rocket engine
- 分类号:
- V231.2
- 文献标志码:
- A
- 摘要:
- 为了解液氧甲烷火箭发动机爆震波点火器工作特性,采用实验方法研究了低供给压力下甲烷/氧气爆震波的形成过程,分析了点火时序、混合比等参数对爆震波参数的影响、缓燃向爆震转变增强措施对爆震波形成过程的作用规律以及结构尺寸对弯管中爆震波参数的影响。研究结果表明:1)不同当量比下,甲烷氧气爆震管点火器的工作状态可分为爆震、快速火焰、慢速火焰、全局淬熄和未点火等状态。阻塞比在试验涉及的0.12至0.42范围内时,随着阻塞比的增大,能产生爆震的当量比范围逐渐扩大; 当量比在1.5附近,阻塞比的大小对是否能形成爆震影响不大。2)弯管及管中弹簧障碍物对于压力高、速度快,接近于爆震波的火焰表现为抑制作用; 对于压力低、传播速度慢的缓燃火焰,则能起到增强作用。
- Abstract:
- In order to understand the working characteristics of detonation wave igniter for LOX/CH4 rocket engine,the detonation wave formation of methane/oxygen under low supply pressure was investigated by experiment.The effects of ignition sequence,mixing ratio and other parameters on detonation wave parameters,the effect of enhancement measures of deflagration to detonation transition on detonation wave formation,and the effect of structure size on detonation wave parameters in bent pipe were analyzed.The results show that: 1)Under different equivalent ratios,the working status of the detonation wave igniter can be divided into detonation,fast flame,slow flame,global quenching and unignited states.When the blockage ratio is in the range of 0.12~0.42,the range of equivalent ratio that can produce detonation increases with the increased blockage ratio.When the equivalent ratio is about 1.5,the blockage ratio has little effect on the formation of detonation wave.2)U shape tubes and the spring in it have suppression effect on the flame for the detonation wave with high pressure and fast speed.In addition,for the flame with low pressure and slow propagation speed,it can play an enhanced role.
参考文献/References:
[1] LIOU L C.Combustion-wave ignition for rocket engine[C]//The 1992 JANNAF Propulsion Meeting.[S.l.]:AIAA,1992.
[2] 焦玉立.Vinci发动机点火系统研制状况[J].火箭推进,2003,29(1): 52-55.JIAO Y L.Development status of the ignition system for vinci[J].Journal of Rocket Propulsion,2003,29(1):52-55.
[3] 潘一力,周海清,程诚.3 000 N液氧/液甲烷发动机方案与试验研究[J].火箭推进,2018,44(6): 7-13.PAN Y L,ZHOU H Q,CHENG C.Scheme and test of 3 000 N liquid oxygen and liquid methane rocket engine[J].Journal of Rocket Propulsion,2018,44(6): 7-13.
[4] SCHNEIDER S,JOHN J,ZOECKLER J.Design,fabrication,and test of a LOX/LCH4 RCS igniter at NASA[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.08 July 2007-11 July 2007.Cincinnati,OH.Reston,Virginia: AIAA,2007.
[5] KLEINHENZ J,SARMIENTO C,MARSHALL W.Spark ignition characteristics of a LO2/LCH4 engine at altitude conditions[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Atlanta,Georgia.Reston,Virginia: AIAA,2012
[6] BREISACHER K.LOX/methane main engine glow plug igniter tests and modeling[R].NASA/TM-2009-215522,2009.
[7] BREISACHER K,AJMANI K.LOX / methane main engine igniter tests and modeling[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.21 July 2008-23 July 2008.Hartford,CT.Reston,Virginia: AIAA,2008
[8] TRUJILLO G R.Design and testing of an OX/CH4 swirl torch ignition system[D].EI Paso:The University of Texas at EI Paso,2015.
[9] 郭红杰,梁国柱,马彬,等.爆震波点火技术基本特性实验[J].推进技术,2005,26(1): 76-79.
[10] 郭红杰,梁国柱,马彬,等.液体火箭发动机爆震波点火技术初步研究[J].北京航空航天大学学报,2005,31(4): 375-380.
[11] 郭红杰,梁国柱,马彬,等.爆震波点火器在氢氧塞式喷管的工程应用[J].火箭推进,2006,32(6): 16-19.GUO H J,LIANG G Z,MA B,et al.Engineering application of detonation wave igniter on hydrogen-oxygen aerospike nozzle engine[J].Journal of Rocket Propulsion,2006,32(6): 16-19.
[12] LIOU L C.X-33 Combustion-Wave Ignition System Tested[R]. NASA,1999.
[13] Lockheed Martin Skunk Works Cooperative Agreement. X-33 phase II annual performance report[Z].1999.
[14] ALKEMADE C T J,BLEEKRODE R,BURGER J C,et al.Bibliography on flame spectroscopy analytical applications 1800-1966[M].[S.l.]: Macmillan Education,1967.
[15] ZELDOVICH Y B,LIBROVICH V B,MAKHVILADZE G M,et al.On the development of detonation in a non-uniformly preheated gas[J].Astronautica Acta,1970,15(5):313-321.
[16] EDWARD D H,THOMAS G O.The diffraction of detonation waves in channels with 90°bend[J].Combustion,1983,3(3):65-76.
[17] 夏昌敬.可燃气体爆轰波在弯曲管道中传播特性研究[D].合肥:中国科学技术大学,2003.
[18] THOMAS G O,WILLIAMS R L.Detonation interaction with wedges and bends[J].Shock Waves,2002,11(6): 481-492.
[19] 王昌建,徐胜利,郭长铭.气相爆轰波在半圆形弯管中传播现象的实验研究[J].爆炸与冲击,2003,23(5): 448-453.
[20] FROLOV S M.Acceleration of the deflagration-to-detonation transition in gases: From Shchelkin to our days[J].Combustion,Explosion,and Shock Waves,2012,48(3): 258-268.
[21] 颜腾冲,熊姹,范玮,等.爆震波速度测量的不确定度研究[C]//中国工程热物理学会燃烧学学术会议.[S.l.]: 中国工程热物理学会,2016.
[22] 韩启祥,王家骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究[J].推进技术,2003,24(1): 63-66.
[23] FARINACCIO R,HARRIS P,STOWE R.Turbulent Flow Effects on DDT Run-up Distance for a Pulse Detonation Engine[C]// AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.[S.l.]: AIAA,2013.
[24] HOKE J,BRADLEY R,SCHAUER F.Impact of DDT mechanism,combustion wave speed,temperature,and charge quality on pulsed-detonation-engine performance[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit.Reno,Nevada.Reston,Virigina: AIAA,2005.
[25] 何小民,张彭岗,王家骅.爆震管内爆燃到爆震转捩过程的实验研究[J].推进技术,2005,26(3): 252-255.
[26] 张群,闫朝,严传俊,等.两相爆震波爆燃向爆震转变过程的数值模拟[J].计算机仿真,2008,25(2): 9-12.
[27] CICCARELLI G,DOROFEEV S.Flame acceleration and transition to detonation in ducts[J].Progress in Energy and Combustion Science,2008,34(4): 499-550.
相似文献/References:
[1]郭红杰,梁国柱,马彬,等.爆震波点火器在氢氧塞式喷管的工程应用[J].火箭推进,2006,32(06):16.
Guo Hongjie,Liang Guozhu,Ma Bin,et al.Engineering application of detonation wave igniter on hydrogen-oxygen aerospike nozzle engine[J].Journal of Rocket Propulsion,2006,32(03):16.
备注/Memo
收稿日期:2020-10-15; 修回日期:2020-11-15
基金项目:国家自然科学基金(11602186)
作者简介:李舒欣(1992—),女,硕士,研究领域为液体火箭发动机热过程。