航天推进技术研究院主办
ZHANG Weijing,LIU Zhanyi,LIU Jiwu,et al.Virtual thermal vacuum test technology of liquid-propellant rocket engine components[J].Journal of Rocket Propulsion,2021,47(04):64-70.
液体火箭发动机组件热真空虚拟试验技术
- Title:
- Virtual thermal vacuum test technology of liquid-propellant rocket engine components
- 文章编号:
- 1672-9374(2021)04-0064-07
- Keywords:
- liquid-propellant rocket engine virtual test optical tracking method radiation heat-transfer
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 相比真实热真空试验,虚拟热真空试验能够有效降低研制成本,缩短研制周期。针对液体火箭发动机组件开展热真空虚拟试验技术研究,基于Sinda-fluint热分析软件建立了由真空舱、热沉、石英灯阵和具体发动机组件构成的热真空虚拟试验平台。热真空虚拟试验中存在大量的面面辐射换热,计算消耗极大,针对该问题采用蒙特卡洛光学追踪法进行处理。针对石英灯阵,分析了其热源特征,简化为高温平板模型并开展了验证试验,结果表明了模型的准确性。最后以某型发动机的流量调节装置为例,同步开展了实际热真空实验和虚拟热真空试验,通过对比测点温度变化曲线,发现在整个测试过程中,虚拟试验和实测值的最高温度偏差在10%以内,验证了虚拟试验平台的有效性。
- Abstract:
- Compared to the real thermal vacuum test,the virtual thermal vacuum test is able to reduce cost and time effectively during the product development.The investigation on virtual thermal vacuum test for liquid-propellant rocket engine components is carried out, and the virtual thermal vacuum environment test platform,which consists of vacuum chamber,heat sink,quartz lamp array and liquid-propellant rocket engine components,is built up based on the Sinda-fluint thermal analysis software.There is a great deal of surface-to-surface radiation heat-transfer in the virtual test,which is bound to consume massive computing resource.This problem is processed based on Monte Carlo optical tracking method.As to the quartz lamp array,its heat source characteristics are analyzed,and it is simplified as a high temperature plate.A proof test is carried out and the results show the accuracy of the model.Finally,taking a flow adjuster of a liquid-propellant rocket engine as an example,both the actual and the virtual thermal vacuum experiments are carried out simultaneously.According to the temperature variation during the whole test,the maximum temperature variation between the virtual test and the experimental results is less than 10% during the whole test process,which verifies the effectiveness of the virtual test platform.
参考文献/References:
[1] 刘锋,金恂叔.论航天器的热试验[J].中国空间科学技术,1999,19(6):33-39.
[2] 黄本诚,马有礼.航天器空间环境试验技术[M].北京:国防工业出版社,2002.
[3] 黄本诚,童靖宇.空间环境工程学[M].北京:中国科学技术出版社,2010.
[4] 陈志,汪杰君,胡亚东,等.星载多型号光电探测器热真空环境试验研究[J].红外技术,2020,42(9):823-828.
[5] 尹本浩,冷国俊,刘芬芬.涂层及材质对大功率天线热真空试验的影响[J].电子机械工程,2019,35(6):12-16.
[6] RABELO L.The virtual test bed project[C]//NASA/ASEE Summer Faculty Fellow ship Program.Florida:Kennedy Space Center,2002.
[7] 曹志松,刘绍然,裴一飞.卫星虚拟热试验平台建模工具模块研究[J].航天器环境工程,2012,29(1):42-45.
[8] 巨亚堂.结构热强度虚拟试验平台技术研究[J].强度与环境,2008,35(3):1-6.
[9] 何西波,王则力,王智勇.虚拟试验技术在结构热试验中的应用[J].强度与环境,2016,43(1):60-64.
[10] 李涛,周丽萍.数值仿真技术在热真空试验中的应用[J].空间电子技术,2014,11(4):90-93.
[11] 纪欣言,裴一飞,刘国青,等.航天器真空热试验用加热板的数值仿真[J].航天器环境工程,2010,27(5):607-610.
[12] 仇善昌,钱婧.数字式太阳敏感器热真空试验温度场仿真研究[J].科学技术与工程,2010,10(10):2434-2437.
[13] 史亚男.喷管羽流对捆绑式运载火箭底部热环境的影响研究[D].北京:北京理工大学,2016.
[14] 张忠利.姿控发动机热防护研究[J].火箭推进,2008,34(3):17-22.
ZHANG Z L.Investigation on thermal protection for attitude correction liquid rocket engine[J].Journal of Rocket Propulsion,2008,34(3):17-22.
[15] 谈和平,夏新林.红外辐射特性与传输的数值计算:计算热辐射学[M].哈尔滨:哈尔滨工业大学,2006.
[16] TURNER T L,ASH R L.Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems[EB/OL].https://adsabs.harvard.edu/abs/1994near.rept....T/abstract,1994.
[17] 杨世铭.传热学基础[M].2版.北京:高等教育出版社,2003.
[18] 刘占一,许婷,张魏静,等.热防护材料表面发射率测试研究[J].火箭推进,2019,45(4):79-84.
LIU Z Y,XU T,ZHANG W J,et al.Measurement study on surface emissivity of thermal protection material[J].Journal of Rocket Propulsion,2019,45(4):79-84.
[19] 闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998.
[20] 侯增祺.航天器热控制技术-原理及其应用[M].北京:科学出版社,2007.
备注/Memo
收稿日期:2021-02-10
基金项目:民用航天技术预先研究项目(D020306)
作者简介:张魏静(1981—),女,硕士,高级工程师,研究领域为液体火箭发动机传热。