航天推进技术研究院主办
JIANG Dandan,REN Jianjun,LIU Jiaxin.Design and test of main bearing structure with composite material in the attitude and orbital control propulsion system[J].Journal of Rocket Propulsion,2021,47(04):71-78.
姿轨控动力系统复合材料主承力结构的设计与试验
- Title:
- Design and test of main bearing structure with composite material in the attitude and orbital control propulsion system
- 文章编号:
- 1672-9374(2021)04-0071-08
- 分类号:
- V434.3
- 文献标志码:
- A
- 摘要:
- 针对某液体姿轨控动力系统主承力结构选用铝、镁合金等金属材料难以达到减重设计的目的,选用碳纤维双马来酰亚胺树脂复合材料加工制造该主承力结构,从而实现在满足结构强度和适应温度环境要求的前提下,达到非常好的减少质量效果,进而实现航天器轻质化设计、提高航天器运载能力、增大有效载荷的目的。根据主承力结构使用环境及功能要求,在完成复合材料的选用及结构设计后,对主承力结构进行了有限元仿真分析及静力试验,通过仿真计算、静力试验的迭代及优化改进,使得产品性能满足了技术要求。研究方法可为复合材料应用于类似主承力结构提供借鉴参考,并对该复合材料主承力结构在型号应用中遇到的技术难点进行总结,对复合材料的发展趋势进行展望。
- Abstract:
- It is difficult to achieve the purpose of lightweight design by using metal materials such as aluminum and magnesium alloy for the bearing structure in a certain liquid attitude and orbit control propulsion system.The main bearing structure is manufactured with the carbon fiber bismaleimide composite.Under the premise of adapting to the mechanical environment and meeting the requirements of structural strength,this composite material can achieve good weight loss to realize the lightweight design of the system,so as to improve the spacecraft carrying capacity and increase the payload.According to the use environment and functional requirements of the main bearing structure,after completing the material selection and structural design,the main bearing structure is subjected to multi-round finite element simulation analysis and static test.Through the iterative optimization improvement with simulation calculation and static test,the product performance meets the technical requirements.The research method can provide references for the application of composite materials to similar main bearing structures,and summarize the technical difficulties encountered in the project application of the composite main bearing structures,and prospect the development trend of composite materials.
参考文献/References:
[1] 张德刚,陈纲.碳纤维树脂基复合材料在防空导弹上的应用[J].现代防御技术,2018,46(2):24-31.
[2] MAIR R I.Advanced composite structures research in Australia[J].Composite Structures,2002,57(1/2/3/4):3-10.
[3] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
[4] 石文静,高峰,柴洪友.复合材料在航天器结构中的应用与展望[J].宇航材料工艺,2019,49(4):1-6.
[5] 李欣,张晓妮,徐晓沐.胶接结构和复合材料用于航空航天技术的发展[J].化学与黏合,2006,28(3):172-175.
[6] 董彦芝,刘芃,王国栋,等.航天器结构用材料应用现状与未来需求[J].航天器环境工程,2010,27(1):41-44.
[7] 章令晖,陈萍.先进树脂基复合材料在卫星天线系统中的应用[J].宇航材料工艺,2011,41(4):1-5.
[8] 穆朋刚,刘文超,杜大华,等.复合材料桁架式机架设计方案[J].火箭推进,2019,45(2):26-31.
[9] VASILIEV V V,RAZIN A F.Anisogrid composite lattice structures for spacecraft and aircraft applications[J].Composite Structures,2006,76(1):182-189.
[10] 何东晓.先进复合材料在航空航天的应用综述[J].高科技纤维与应用,2006,31(2):9-11.
[11] 刘敬峰,张德文,杨慧丽,等.双马来酰亚胺改性氰酸酯树脂及其复合材料[J].热固性树脂,2008,23(2):11-14.
[12] 殷永霞,李皓鹏.先进树脂基复合材料在中国航天器中的应用[J].航天返回与遥感,2018,39(4):101-108.
[13] 赵伟栋,王磊,潘玲英,等.聚酰亚胺复合材料研究进展[J].宇航材料工艺,2013,43(4):14-19.
[14] 赵稼祥.东丽公司碳纤维及其复合材料的进展[J].宇航材料工艺,2000,30(6):53-56.
[15] 申宏旋,毛丽贺.国产碳纤维与东丽碳纤维的性能[J].纺织科技进展,2017(6):35-37.
[16] 许桂阳,博学金,王中,等.国产T1000级碳纤维性能[J].固体火箭技术,2020,43(1):78-83.
[17] 潘月秀,于雅琳,朱世鹏,等.基于三维载荷传递机制的单向复合材料纵向拉伸的多尺度模型[J].玻璃钢/复合材料,2015(6):5-11.
[18] 徐巍巍.碳纤维复合材料在高新技术领域中的应用[J].国外丝绸,2005,20(5):21-23.
[19] 刘晓伟,姚明明,李佳明,等.轻质高比冲1000N双组元轨控发动机研制[J].火箭推进,2015,41(4):8-12.
[20] 刘昌国,邱金莲,陈明亮.液体火箭发动机复合材料喷管延伸段研究进展[J].火箭推进,2019,45(4):1-8.
[21] 赵云峰,孙宏杰,李仲平.航天先进树脂基复合材料制造技术及其应用[J].宇航材料工艺,2016,46(4):1-7.
[22] 李树娟,钟焕荣,李智,等.纤维及其复合材料老化机理研究进展[J].合成材料老化与应用,2013,42(6):54-58.
备注/Memo
收稿日期:2020-12-11
基金项目:上海空间发动机工程技术研究中心资助项目(17DZ2280800)
作者简介:姜丹丹(1989—),女,硕士,研究领域为液体姿轨控动力系统设计。