航天推进技术研究院主办
ZHANG Ze,XUE Xiang,WANG Yuanding,et al.Prospect of space nuclear power propulsion technology[J].Journal of Rocket Propulsion,2021,47(05):1-13.
空间核动力推进技术研究展望
- Title:
- Prospect of space nuclear power propulsion technology
- 文章编号:
- 1672-9374(2021)05-0001-13
- 分类号:
- V439.5
- 文献标志码:
- A
- 摘要:
- 为满足未来太阳系边际探测、深空轨道转移、载人深空探测等大型空间任务对于高可靠、可持续、大功率动力源的需求,空间核动力推进技术成为全球研究热点。通过追踪世界主要国家现阶段空间核动力发展动态,对空间核动力领域模块化、通用化、型谱化的发展方向进行了系统性梳理,对涉及的总体技术、散热技术、制造技术、验证技术等关键技术进行了解析。最终总结我国核心优势和潜在风险,为未来空间核动力推进的规划论证与技术研究提供参考。
- Abstract:
- In order to meet the demand of reliable,sustainable and high-power energy sources for large-scale space missions in the future,such as marginal exploration of the solar system,deep-space orbit transfer and manned deep-space exploration,space nuclear power propulsion technology has become a global research hotspot. By reviewing the current development trends of space nuclear power in major countries,this paper systematically sorts out the development direction of space nuclear power including modularization,generalization and spectrum. The key technologies such as integration,heat dissipation,manufacture,verification and others involved in space nuclear power are thoroughly analyzed. Finally,the core advantages and potential risks for China are summarized,which provides a reference for the demonstration and investigation of future space nuclear power propulsion.
参考文献/References:
[1] 闫锋哲,陈章隆.空间核反应堆电源发展及应用[J].科技创新导报,2019,16(12):21-22. [2] 张梦龙,张悦,王宝和.空间核推进系统综述与展望[J].兵器装备工程学报,2018,39(9):96-100. [3] 刘佳,康小录,张岩,等.基于核电的大功率霍尔电推进系统设计及分析[J].原子能科学技术,2019,53(1):9-15. [4] 廖宏图.空间核动力技术概览与发展脉络初探[J].火箭推进,2016,42(5):58-65.LIAO H T.Survey and venation analysis on space nuclear power[J].Journal of Rocket Propulsion,2016,42(5):58-65. [5] 李永,周成,吕征,等.大功率空间核电推进技术研究进展[J].推进技术,2020,41(1):12-27. [6] TOMBOULIAN B N.Lightweight,high-temperature radiator for in-space nuclear-electric power and propulsion[D].Massachusetts:University of Massachusetts Amherst,2014. [7] 胡古,赵守智.空间核反应堆电源技术概览[J].深空探测学报,2017,4(5):430-443. [8] 马世俊,杜辉,周继时,等.核动力航天器发展历程(上)[J].中国航天,2014(4):31-35. [9] 马世俊,杜辉,周继时,等.核动力航天器发展历程(下)[J].中国航天,2014(5):32-35. [10] VOSS S S.SNAP reactor overview[R].AFWL-TN-84-14. [11] PLUTA P R,SMITH M A,MATTEO D N.SP-100,a flexible technology for space power from 10 s to 100 s of kWe[C]//Proceedings of the 24th Intersociety Energy Conversion Engineering Conference.Washington DC,USA:IEEE,1989. [12] BENNETT G L.Nuclear thermal propulsion program overview[R].NASA-19920001871. [13] ASHCROFT J,ESHELMAN C.Summary of NR program prometheus efforts[J].AIP Conference Proceedings,2007,880(1):497-521. [14] NASA.2015 NASA technology roadmaps[R/OL].[2021—3—13]https://nasa.gov/offices/oct/home/roadmaps/index.html. [15] NASA.2020 NASA technology taxonomy[R].HQ-E-DAA-TN73838. [16] CHAIKEN M.The kilopower space nuclear fission power reactor[R].GRC-E-DAA-TN68456. [17] TRUMP D J.Presidential memorandum on launch of spacecraft containing space nuclear systems[EB/OL].[2019—8—20].https://www.whitehouse.gov/presidential-actions/presidential-memorandum-launch-spacecraft-containing-space-nuclear-systems/. [18] International Atomic Energy Agency.The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M].Vienna:International Atomic Energy Agency,2005. [19] ZAKIROV V,PAVSHOOK V.Feasibility of the recent Russian nuclear electric propulsion concept:2010[J].Nuclear Engineering and Design,2011,241(5):1529-1537. [20] 周成,张笃周,李永,等.空间核电推进技术发展研究[J].空间控制技术与应用,2013,39(5):1-6. [21] 朱安文,刘磊,马世俊,等.空间核动力在深空探测中的应用及发展综述[J].深空探测学报,2017,4(5):397-404. [22] ORIOL S,MASSON F,TINSLEY T,et al.DEMOCRITOS:Development logic for a demonstrator preparing nuclear-electric spacecraft[C]// 2016 Nuclear and Emerging Technologies for Space.Huntsville:[s.n.],2016. [23] KOROTEEV A S,KAREVSKIY A V,LOVTSOV A S,et al.Study of operation of power and propulsion system based on closed brayton cycle power conversion unit and electric propulsion[C]// 36th International Electric Propulsion Conference.Vienna:IEPC,2019. [24] JANSEN F,GRUNDMANN J T,MAIWALD V,et al.High power electric propulsion:MARS plus EUROPA-already beyond 2025[C]// 36th International Electric Propulsion Conference.Vienna:IEPC,2019. [25] European Space Agency(ESA).Implementation of the guidelines provided for in the international safety framework for nuclear power source applications in outer space for ESA space missions-the ESA safety policy on the use of nuclear power sources[EB/OL].[2019—2—8].A/AC.105/C.1/2019/CRP.10. [26] 何伟锋,向红军,蔡国飙.核火箭原理、发展及应用[J].火箭推进,2005,31(2):37-43.HE W F,XIANG H J,CAI G B.The fundamentals,developments and applications of nuclear rocket propulsion[J].Journal of Rocket Propulsion,2005,31(2):37-43. [27] 霍红磊,安伟健,解家春,等.CERMET-SNRE堆芯物理计算分析[J].原子能科学技术,2016,50(12):2150-2156. [28] 游尔胜,石磊,郑艳华,等.球床堆在空间核动力系统中的应用[J].原子能科学技术,2015,49(S1):75-80.YOU E S,SHI L,ZHENG Y H,et al.Application of pellet bed reactor in space nuclear power system[J].Atomic Energy Science and Technology,2015,49(S1):75-80. [29] 刘忠恕.核热火箭发动机系统方案研究[D].北京:中国航天科技集团公司第一研究院,2017. [30] 王浩泽,李子亮,吴宏雨,等.基于金属陶瓷堆芯1 000 kN核热火箭发动机系统及组件参数研究[J].载人航天,2018,24(5):637-642. [31] 李强,李家文,王戈,等.新型空间双模式核热推进系统热力学性能研究[J].火箭推进,2018,44(6):21-28.LI Q,LI J W,WANG G,et al.Research on thermodynamic performance of a new aerospace nuclear thermal propulsion system[J].Journal of Rocket Propulsion,2018,44(6):21-28. [32] 朱岩,马元,南向谊,等.大推力核热火箭运载器及动力特性分析[J].载人航天,2018,24(3):388-393. [33] 王三丙,马元,郭斯茂,等.核热火箭反应堆燃料对比分析[J].载人航天,2018,24(6):784-795.WANG S B,MA Y,GUO S M,et al.Comparison and analysis of nuclear thermal propulsion reactor fuel[J].Manned Spaceflight,2018,24(6):784-795. [34] 廖宏图.核推进的空间应用浅析[J].火箭推进,2016,42(3):6-14.LIAO H T.Preliminary application analysis of nuclear propulsion in space[J].Journal of Rocket Propulsion,2016,42(3):6-14. [35] 陈杰,高劭伦,夏陈超,等.空间堆核动力技术选择研究[J].上海航天,2019,36(6):1-10. [36] GIBSON M,SCHMITZ P.Higherpower design concepts for NASAs kilopower reactor[C]//2020 IEEE Aerospace Conference.Big Sky,MT,USA:IEEE,2020. [37] 周继时,朱安文,耿言.空间核能源应用的安全性设计、分析和评价[J].深空探测学报,2015,2(4):302-312. [38] 解家春,霍红磊,苏著亭,等.核热推进技术发展综述[J].深空探测学报,2017,4(5):417-429. [39] FULLER R L.Closed Brayton cycle power conversion unit for fission surface power phase I final report[R].NASA/CR-2010-215673. [40] 张秀,张昊春,刘秀婷,等.空间核电源热管式辐射散热器热分析与参数优化[J].宇航学报,2019,40(4):452-458.ZHANG X,ZHANG H C,LIU X T,et al.Thermal analysis and parameter optimization of a heat-pipe radiator for space nuclear power[J].Journal of Astronautics,2019,40(4):452-458. [41] 吴伟仁,刘继忠,赵小津,等.空间核反应堆电源研究[J].中国科学:技术科学,2019,49(1):1-12.WU W R,LIU J Z,ZHAO X J,et al.System engineering research and application foreground of space nuclear reactor power generators[J].Scientia Sinica(Technologica),2019,49(1):1-12. [42] 姜夺玉,江新标,王立鹏.空间核热推进粒子球床堆慢化剂温度效应分析[J].核动力工程,2016,37(1):4-7.JIANG D Y,JIANG X B,WANG L P.Analysis of moderator temperature effect for PBR of SNTP[J].Nuclear Power Engineering,2016,37(1):4-7. [43] 黄洪涛,王卫军,钟武烨,等.钼铼合金在空间核电源中的应用性能研究进展[J].原子能科学技术,2020,54(3):505-511. [44] 俄罗斯联邦提效工作文件.外星空间应用核动力源的独特设计考虑[C]//第43届和平利用外层空间委员会会议.维也纳:和平利用外层空间委员会,2006. [45] 周继时,李莎,刘磊,等.核动力航天器总体设计研究[J].深空探测学报,2017,4(5):444-452. [46] 联合国大会第47/68号决议.关于在外层空间使用核动力源的原则[Z].1993. [47] United Nations Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee,International Atomic Energy Agency.Safety framework for nuclear power source applications in outer space[M].Vienna:International Atomic Energy Agency,2009. [48] 龙杰,唐玉华.国外空间核动力源安全管理机制探析及其启示:基于国外政府层面的相关经验[J].国际太空,2020(5):21-26. [49] 刘继忠,唐玉华,龙杰,等.关于建立我国空间核动力源应用安全机制的建议[J].科学通报,2020,65(10):875-881. [50] 王国语,吕端.空间核动力源应用国际规则现状与发展分析[J].中国航天,2016(9):40-44.
备注/Memo
基金项目:上海市青年科技英才扬帆计划(21YF1430200)
作者简介:张泽(1993—),男,博士,研究领域为先进空间推进技术。