航天推进技术研究院主办
JIAO Zhongtian,WANG Yongjia,LI Wei,et al.Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions[J].Journal of Rocket Propulsion,2021,47(05):22-34.
燃料喷孔数对非预混旋转爆震起爆过程的影响
- Title:
- Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions
- 文章编号:
- 1672-9374(2021)05-0022-13
- 分类号:
- V231.2
- 文献标志码:
- A
- 摘要:
- 环缝-喷孔结构是目前旋转爆震燃烧中经常采用的喷注结构之一。为了研究环缝-喷孔喷注结构中燃料喷孔数量对氢气/空气旋转爆震的影响,在保持燃料喷孔总面积不变的前提下,改变燃料喷孔数量(60、90、120、150),对冷态混合、爆震波起爆及稳定过程进行了数值模拟。总质量流量为206 g/s时,60和90喷孔喷注结构可以实现稳定爆震,而120和150喷孔则起爆失败 60喷孔构型中出现了多个旋转爆震波,并稳定于双波同向传播模态。总质量流量减小至103 g/s时,120和150喷孔可实现稳定爆震。结果表明,同一喷注结构在不同流量下的掺混效果并不相同,影响旋转爆震的起始 随着供给流量的提高,爆震波数量呈现增多趋势 氢气的轴向和径向分布越均匀,越容易形成旋转爆震波,周向分布越均匀,旋转爆震波传播速度越快,最高可达1 827 m/s。
- Abstract:
- Slot-orifice injection scheme is now commonly used in rotating detonations. The influence of the number of fuel injection orifices(60,90,120,150)on rotating detonations inside an annular combustor were investigated numerically including the mixing process,the detonation initiation process and the detonation propagation process. For a total mass flow rate of 206 g/s,stable rotating detonation waves can be obtained when 60 and 90 orifices were used,while rotating detonation fails to be produced when 120 and 150 orifices were used. Multi-waves appeared in the 60 orifices configuration which finally transits into a stable dual-wave mode. When the total mass flow rate decreased to 103 g/s,stable detonation wave was able to be formed in the 120 and 150 orifices configurations. The results indicate that the mixing process of the same injection configuration will be affected by the mass flow rate,which has a great impact on the detonation initiation. If distribution of H2 in axialand radial directions is more uniform,the detonation initiation becomes easier. It is also observed that the detonation wave number increases with the mass flow rate. Moreover,a more uniform distribution of H2 in the circumferential direction will lead to a faster detonation velocity,and a highest velocity of 1 827 m/s has been obtained.
参考文献/References:
[1] 刘世杰,林志勇,覃慧,等.连续旋转爆震波发动机研究进展[J].飞航导弹,2010(2):70-75. [2] 严传俊,范玮.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社,2005. [3] KINDRACKI J,WOLANSKI P,GUT Z.Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J].Shock Waves,2011,21(2):75-84. [4] VOITSEKHOVSKII B V.Maintained detonations [J].Doklady Akademii Nauk UzSSR,1959,129(6):1254-1256. [5] VOITSEKHOVSKII B V.Spinning maintained detonations[J].Prikl Mekh Tekh Fiz,1960(3):157-164. [6] NICHOLLS J A,CULLEN R E.The feasibility of a rotating detonation wave rocket motor[R].RPL-TDR-64-113,1964. [7] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F.Continuous spin detonations[J].Journal of Propulsion and Power,2006,22(6):1204-1216. [8] ZHDAN S A,BYKOVSKII F A,VEDERNIKOV E F.Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J].Combustion,Explosion,and Shock Waves,2007,43(4):449-459. [9] SCHWER D,KAILASANATH K.Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J].Proceedings of the Combustion Institute,2013,34(2):1991-1998. [10] LU F,BRAUN E,MASSA L,et al.Rotating detonation wave propulsion:experimental challenges,modeling,and engine concepts(invited)[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.31 July 2011-03 August 2011,San Diego,California.Reston,Virginia:AIAA,2011:6043. [11] STECHMANN D P,HEISTER S D.Development and testing of a high-pressure rotating detonation engine for rocketapplications[C]//54th AIAA Aerospace Sciences Meeting.4-8 January 2016,San Diego,California,USA.Reston,Virginia:AIAA,2016:1201. [12] STECHMANN D P,HEISTER S D,HARROUN A J.Rotating detonation engine performance model for rocket applications[J].Journal of Spacecraft and Rockets,2018,56(3):887-898. [13] 严宇,胡洪波,洪流,等.自燃推进剂旋转爆震燃烧实验研究[J].推进技术,2018,39(9):1986-1993. [14] 王朝晖,孔维鹏,王仙,等.富氢燃气与液氧爆轰及补燃特性试验研究[J].火箭推进,2019,45(6):10-16.WANG Z H,KONG W P,WANG X,et al.Experimental study on the detonation and spontaneous combustion characteristics of hydrogen-rich gas and liquid oxygen[J].Journal of Rocket Propulsion,2019,45(6):10-16. [15] 胡洪波,严宇,张锋,等.煤油富燃燃气旋转爆震燃烧实验研究[J].推进技术,2020,41(4):881-888. [16] FUJIWARA T,HISHIDA M,KINDRACKI J,et al.Stabilization of detonation for any incoming Mach numbers[J].Combustion,Explosion,and Shock Waves,2009,45(5):603-605. [17] TSUBOI N,HAYASHI A K.Numerical study on spinning detonations[J].Proceedings of the Combustion Institute,2007,31(2):2389-2396. [18] SCHWER D,KAILASANATH K.Effect of inlet on fill region and performance of rotating detonation engines[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.San Diego,California.Reston,Virginia:AIAA,2011. [19] SCHWER D,KAILASANATH K.Feedback into mixture plenums in rotating detonation engines[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Nashville,Tennessee.Reston,Virginia:AIAA,2012. [20] LIU M,ZHOU R,WANG J P.Numerical investigation of different injection patterns in rotating detonation engines[J].Combustion Science and Technology,2015,187(3):343-361. [21] 刘世杰,林志勇,林伟,等.H2/Air连续旋转爆震波的起爆及传播过程试验[J].推进技术,2012,33(3):483-489. [22] 王超,刘卫东,刘世杰,等.吸气式连续旋转爆震与来流相互作用[J].航空学报,2016,37(5):1411-1418. [23] WANG Z C,WANG K,LI Q G,et al.Effects of the combustor width on propagation characteristics of rotating detonation waves[J].Aerospace Science and Technology,2020,105:106038. [24] YAO S B,TANG X M,LUAN M Y,et al.Numerical study of hollow rotating detonation engine with different fuel injection area ratios[J].Proceedings of the Combustion Institute,2017,36(2):2649-2655. [25] SUN J,ZHOU J,LIU S J,et al.Effects of injection nozzle exit width on rotating detonation engine[J].Acta Astronautica,2017,140:388-401. [26] 周胜兵,王栋,马虎,等.氧化剂喷注面积对旋转爆震波传播特性影响的实验研究[J].推进技术,2017,38(11):2634-2640. [27] MENG Q Y,ZHAO N B,ZHENG H T,et al.Numerical investigation of the effect of inlet mass flow rates on H2/air non-premixed rotating detonation wave[J].International Journal of Hydrogen Energy,2018,43(29):13618-13631.
备注/Memo
基金项目:国家自然科学基金(52076181,51876179) 陕西省创新能力支撑计划项目(2021KJXX-93) 国防科技重点实验室基金(6142704180101)
作者简介:焦中天(1996—),男,博士生,研究领域为爆震燃烧及旋转爆震推进。