航天推进技术研究院主办
ZHANG Weixing,LI Jianmin,HOU Wen,et al.BP neural network applied in fault detection of rocket pressurized delivery system[J].Journal of Rocket Propulsion,2021,47(05):85-91.
BP神经网络用于火箭增压输送系统故障检测
- Title:
- BP neural network applied in fault detection of rocket pressurized delivery system
- 文章编号:
- 1672-9374(2021)05-0085-07
- 分类号:
- V434,TP277
- 文献标志码:
- A
- 摘要:
- 增压输送系统是火箭产生推力的核心系统,其工作可靠性直接关系到运载火箭安全性。以某型号运载火箭第三级作为故障检测对象,将遥测数据抽样和预处理,降低数据规模和提高故障检测效率,模拟常见故障和偶发故障扩大故障数据规模,使得故障数据和正常数据均衡,通过添加归一化时间序列区分火箭工况。经处理后的遥测数据用于训练BP神经网络,故障检测结果表明:BP神经网络可以利用火箭遥测数据对增压输送系统进行有效的故障检测,正常数据误报率和故障数据漏报率均较低,且可以满足实时故障检测需求。
- Abstract:
- The pressurized delivery system is the core system of rocket to generate thrust,and its working reliability is directly related to the safety of launch vehicle. Taking the third stage of a certain type of launch vehicle as the fault detection object,the telemetry data is sampled and preprocessed to reduce the data scale and improve the fault detection efficiency.By simulating common faults and occasional faults to expand the fault data scale,the fault data and normal data are balanced,and the rocket working conditions are distinguished by adding normalized time series. The processed telemetry data is used to train BP neural network.The fault detection results show that BP neural network can effectively detect the fault of pressurized delivery system by using therocket telemetry data,and the false alarm rate of normal data and false alarm rate of fault data are both low,and it can meet the real-time fault detection requirements.
参考文献/References:
[1] 廖少英.液体火箭推进增压输送系统[M].北京:国防工业出版社,2007. [2] SCHWABACHER M,WATERMAN R.Pre-launch diagnostics for launch vehicles[C]//2008 IEEE Aerospace Conference.Big Sky,MT,USA:IEEE,2008:1-8. [3] RODNEY A.Evaluation of anomaly detection capability for ground-based pre-launch shuttle operations[M]//Aerospace Technologies Advancements.[S.l.]:In Tech,2010. [4] FERRELL B,BROWN B,HALL D,et al.Usage of fault detection isolation and recovery(FDIR)in CxP launch operations[C]//SpaceOps 2010 Conference.Huntsville,Alabama.Reston,Virigina:AIAA,2010. [5] SCHWABACHER M,MARTIN R,WATERMAN R,et al.Ares I-X ground diagnostic prototype[C]// Aerospace Conference 2010.Atlanta,Georgia.Reston,Virginia:AIAA,2010. [6] 李艳军.新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D].长沙:国防科学技术大学,2014. [7] 陈海峰,赵政社,张少博.基于振动检测的发动机故障诊断算法研究[J].火箭推进,2012,38(6):62-69.CHEN H F,ZHAO Z S,ZHANG S B.Research on liquid rocket engine fault diagnosisAlgorithm according to vibration detection[J].Journal of Rocket Propulsion,2012,38(6):62-69. [8] 党锋刚,马红宇,李春红,等.液氧煤油发动机稳态故障仿真分析[J].火箭推进,2012,38(2):27-31.DANG F G,MA H Y,LI C H,et al.Steady-state fault simulation and effect analysis of LOX/kerosene rocket engine[J].Journal of Rocket Propulsion,2012,38(2):27-31. [9] 孙迪钢.基于深度学习的轨道转辙机故障检测系统[D].广州:华南理工大学,2018. [10] 司佳.面向工业大数据的智能故障诊断方法研究[D].济南:山东大学,2018. [11] 吴建军,程玉强,崔星.液体火箭发动机健康监控技术研究现状[J].上海航天(中英文),2020,37(1):1-10. [12] 李京浩.基于数据挖掘技术的液体火箭发动机故障检测和诊断研究[D].长沙:国防科学技术大学,2007. [13] 张翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障数据聚类分析研究[J].火箭推进,2015,41(2):118-122.ZHANG X,XU H P,AN X Y,et al.Clustering analysis for fault data in steady process of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(2):118-122. [14] 耿辉,张翔,张素明,等.一种基于聚类分析的液体火箭发动机稳态过程故障诊断方法[J].火箭推进,2014,40(5):86-91.GENG H,ZHANG X,ZHANG S M,et al.Cluster analysis based diagnosis method for fault in steady process of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2014,40(5):86-91. [15] 李宁宁.粒子群算法研究及其在航天发动机健康管理中的应用[D].天津:天津理工大学,2019. [16] 谢廷峰,刘洪刚,黄强,等.液体火箭发动机地面试车实时故障检测参数的选取[J].航天控制,2008,26(6):77-81. [17] 黄敏超,冯心,张育林.应用神经网络识别液体火箭发动机的故障模式[J].推进技术,1993,14(6):32-38. [18] 黄敏超,张育林,陈启智.动态神经网络在液体火箭发动机故障检测与分离中的应用[J].航空动力学报,1996,11(2):149-152. [19] WHEELER K,DHAWAN A,MEYER C.SSME sensor modeling using radial basis function neural networks[C]//30th Joint Propulsion Conference and Exhibit.Indianapolis,IN.Reston,Virginia:AIAA,1994.
备注/Memo
基金项目:国家自然科学基金(61573323)
作者简介:张伟星(1993—),男,硕士,研究领域为数据挖掘及液体火箭故障检测。