航天推进技术研究院主办
WANG Youyin,TANG Jingfeng,CHANG Juntao,et al.Optimal stage-transition Mach number of the rocket-ramjet combined engine[J].Journal of Rocket Propulsion,2021,47(06):46-54.
火箭冲压组合发动机的最佳转级马赫数
- Title:
- Optimal stage-transition Mach number of the rocket-ramjet combined engine
- 文章编号:
- 1672-9374(2021)06-0046-09
- Keywords:
- rocket-ramjet combined engine scramjet transition Mach number fuel consumption engine performance
- 分类号:
- V236
- 文献标志码:
- A
- 摘要:
- 随着组合发动机在可重复使用的高超声速飞行器中广泛应用,组合发动机转级马赫数的选择对于飞行系统的整体性能至关重要。使用飞行仿真模型计算采用火箭冲压组合动力系统的飞行器的飞行过程,研究了不同的加速方案对应的0~6 Ma加速过程特性以及影响巡航时间的因素。分析表明转级马赫数越低冲压发动机消耗的燃油量越高,但转级马赫数较高时,火箭发动机的耗油率增加,因此火箭组合发动机存在最佳的转级马赫数。通过对最佳转级马赫数的影响因素进行分析,发现最佳转级马赫数受火箭发动机的比冲影响较大,在宽速域推进系统中使用具有高比冲和推力的火箭将增加高超音速飞行器的巡航时间。
- Abstract:
- As the combined engine is widely used on the reusable hypersonic vehicle,the selection of transition Mach number of combined engines is significant to the overall performance of the entire flight system. By calculating the flight process of rocket-ramjet combined propulsion system with the flight simulation model,the characteristics of 0~6 Ma acceleration process and the influence factors of the cruising duration corresponding to different acceleration schemes were analyzed. The analysis showed that lower transition Mach number leads to higher fuel consumption of ramjet engine,but higher transition Mach number leads to higher fuel consumption of rocket engine. So,there is an optimal transition Mach number. The analysis on the influences of transition Mach number showed that the optimal transition Mach number largely depends on the specific impulse of rocket engine,and the high specific impulse and thrust rocket engine of the wide range propulsion system can increase the cruise time of hypersonic vehicles.
参考文献/References:
[1] MOSES P L,RAUSCH V L,NGUYEN L T,et al.NASA hypersonic flight demonstrators:overview,status,and future plans[J].Acta Astronautica,2004,55(3/4/5/6/7/8/9):619-630.
[2] VOLAND R T,HUEBNER L D,MCCLINTON C R. X-43A hypersonic vehicle technology development[J].Acta Astronautica,2006,59(1/2/3/4/5):181-191.
[3] RONDEAU C M,JORRIS T R. X-51A scramjet demonstrator program:waverider ground and flight test[EB/OL].https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071118633.html,2013.
[4] TAGUCHI H,MAITA M,YATSUYANAGI N,et al.Airbreather/rocket combined propulsion system research for Japanese SSTO spaceplane[C]//9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston,Norfolk,VA:AIAA,1999.
[5] TAGUCHI H,FUTAMURA H,YANAGI R,et al.Conceptual study of pre-cooled air turbojet/rocket engine with scramjet(PATRES)[EB/OL].https://www.semanticscholar.org/paper/Conceptual-Study-of-Pre-Cooled-Air-Turbojet%2FRocket-H.Taguchi-H.Futamura/055 7af471c67a0f98de0 9a4d2a5629d15864a998,1999.
[6] ZUO F Y,HUANG G P,XIA C. Investigation of internal-waverider-inlet flow pattern integrated with variable-geometry for TBCC[J].Aerospace Science and Technology,2016,59:69-77.
[7] FOSTER L,SAUNDERS J,SANDERS B,et al.Highlights from a Mach 4 experimental demonstration of inlet mode transition for turbine-based combined cycle hypersonic propulsion[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Atlanta,Georgia:AIAA,2012.
[8] SAVINO R,RUSSO G,DORIANO V,et al.Performances of a small hypersonic airplane(HyPlane)[J].Acta Astronautica,2015,115:338-348.
[9] KAI L,LI J. Performance analysis of solid propellant ATR in augmented mode[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen,Chian:AIAA,2017.
[10] MINATO R. Advantage of ethanol fuel for gas generator cycle air turbo ramjet engine[J].Aerospace Science and Technology,2016,50:161-172.
[11] TANATUSGU N,SATO T,NARUO Y,et al.Development study on ATREX engine[J].Acta Astronautica,1997,40(2/3/4/5/6/7/8):165-170.
[12] YOUNG D,KOKAN T,TANNER C,et al.Lazarus:a SSTO hypersonic vehicle concept utilizing RBCC and HEDM propulsion technologies[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra,Australia:AIAA,2006.
[13] TOMIOKA S,KOBAYASHI K,SAITO T,et al.Some aspects on hydrocarbon-fueled RBCC engines for a TSTO launch vehicle[EB/OL].https://xueshu.baidu.com/usercenter/paper/show?paperid=89c4f69b359a49c97f7 e6e55e171f61f,2016.
[14] 刘昊,王君,张留欢. SMC模式下RBCC发动机4 Ma工况性能仿真[J].火箭推进,2021,47(2):27-31.
LIU H,WANG J,ZHANG L H. Performance simulation of 4 Ma operating condition under SMC mode for RBCC engine[J].Journal of Rocket Propulsion,2021,47(2):27-31.
[15] CROCKER A,WHITE S,ANDREWS J,et al.Airport to orbit,a comparison of horizontal takeoff RLVs[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville,Alabama:AIAA,2003.
[16] HANK J,FRANKE M,EKLUND D. TSTO reusable launch vehicles using airbreathing propulsion[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento California:AIAA,2006.
[17] 张帆,张会强. RBCC引射性能对飞行器入轨运载特性影响分析[J].火箭推进,2020,46(5):42-47.
ZHANG F,ZHANG H Q.Influence analysis of RBCC ejector mode performance on transportation capacity of launch vehicle[J].Journal of Rocket Propulsion,2020,46(5):42-47.
[18] 陈军,白菡尘.RBCC引射模态气流抵抗反压能力受掺混程度影响研究[EB/OL].(2021-07-09).https://doi.org/10.13675/j.cnki.tjjs.200916.
[19] CALDWELL R,FRANKE M,EKLUND D. Weight analysis of two-stage-to-orbit reusable launch vehicles[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson,Trizona:AIAA,2005.
[20] BROCK M A. Performance study of two-stage-to-orbit reusable launch vehicle propulsion alternatives[EB/OL].https://www.researchgate.net/publication/235052932_Performance_Study_of_Two-Stage-To-Orbit_Reusable_Launch_Vehicle_Propulsion_Alternatives,2004.
[21] NILSEN J,FRANKE M,ANTHENIEN R,et al.Staging variables on two-stage-to-orbit reusable launch vehicles[C]//Space 2005. Long Beach,California:AIAA,2005.
[22] 王厚庆,何国强,刘佩进. 以RBCC为动力的巡航飞行器有效载荷质量敏感性分析[J].固体火箭技术,2007,30(2):87-89.
[23] CHEVALIER A,BOUCHEZ M,LEVINE V,et al.French-Russian partnership on hypersonic wide range ramjets[C]//Space Plane and Hypersonic Systems and Technology Conference. Norfolk,VA:AIAA,1996.
备注/Memo
收稿日期:2021-08-21 修回日期:2021-09-13
基金项目:国家自然科学基金(51676053)
作者简介:王友银(1991—),男,博士,研究领域为组合动力发动机。