航天推进技术研究院主办
ZOU Zhengping,WANG Yifan,DU Pengcheng,et al.Thermodynamic performance analysis of anovel precooled airbreathing engine layout[J].Journal of Rocket Propulsion,2021,47(06):62-75.
强预冷发动机新型热力循环布局及性能分析
- Title:
- Thermodynamic performance analysis of anovel precooled airbreathing engine layout
- 文章编号:
- 1672-9374(2021)06-0062-14
- 分类号:
- V231.9
- 文献标志码:
- A
- 摘要:
- 为兼顾高超声速强预冷发动机的比冲及系统复杂度,提出了一种耦合闭式氦循环的强预冷发动机新型热力循环布局。该热力循环采用空气适度预冷,闭式氦循环采用较为简单的二支路分流冷却压缩方式。在支路1中,使用较少的液氢即可保证氦被冷却至低温以便于压缩,可提高闭式循环增压比进而增加闭式循环输出功率 在支路2中,利用温度相对较低的氢气对预冷器出口分流的部分高温氦冷却,保证支路1和支路2掺混后的氦温度满足预冷器要求。对该新型强预冷发动机的设计点性能进行了参数化影响分析及优化设计,马赫数5工作点比冲可达3 287 s。通过旁路冲压当量比和喷管喉道面积的调节,可保证进气道、预冷涡轮通道和旁路冲压通道的匹配工作,且能实现冷却与燃烧所需燃料量的平衡 通过对闭式氦循环基准压力的调节可实现发动机推力的有效调节,且各主要部件均能匹配稳定工作。沿典型飞行轨迹的发动机总体性能计算表明,在马赫数0~5工作范围内,该新型强预冷发动机具有较高的推力和比冲性能 且闭式氦循环较为简单,利于工程实现,该新型热力循环布局可为高超声速强预冷发动机设计提新的思路。
- Abstract:
- In order to consider the specific impulse and system complexity at the same time,a new hypersonic precooled airbreathing engine thermodynamic cycle layout which coupled with closed-loop helium cycle was proposed. This thermodynamic cycle layout adopts moderate air precooling,and a relatively simple two branch splitting,cooling and recompression pattern is adopted in the closed-loop helium cycle. In the first branch,less liquid hydrogen is used to ensure that helium was chilled to lower temperature,making helium easy to be compressed,so as to increase the pressure ratio of closed-loop cycle and then increase the output power of the closed-loop cycle. In the second branch,the hydrogen with relatively lower temperature is further used to cool the high-temperature helium form the precooler to ensure that the helium temperature after mixing meets the requirements of the precooler. Firstly,the parametric analysis and optimization of the design point performance of precooled airbreathing engine were carried out,and the engine specific impulse at Mach 5 working point can reach 3 287 s. By adjusting the equivalence ratio of bypass ramjet combustor and nozzle throat area,matched working of the intake,precooled turbine channel and bypass ramjet channel can be achieved,and the amount of fuel for cooling and combustion can be balanced. The engine thrust can be effectively regulated by adjusting the base pressure of closed-loop helium cycle,and all the main components can work stably. The overall engine performance calculated along a typical flight trajectory shows that this new precooled airbreathing engine has high thrust and specific impulse in the working range of Mach 0~5. The closed-loop helium cycle layout is relatively simple and easier to achieve engineering realization. Thus this new thermodynamic cycle layout can offer a new idea for the design of hypersonic precooled airbreathing engine.
参考文献/References:
[1] 张灿,王轶鹏,叶蕾. 国外近十年高超声速飞行器技术发展综述[J].战术导弹技术,2020(6):81-86.
[2] 龚春林,陈兵. 组合循环动力在水平起降天地往返飞行器上的应用[J].科技导报,2020,38(12):25-32.
[3] 凌文辉,侯金丽,韦宝禧,等. 空天组合动力技术挑战及解决途径的思考[J].推进技术,2018,39(10):2171-2176.
LING W H,HOU J L,WEI B X,et al.Technical challenge and potential solution for aerospace combined cycle engine[J].Journal of Propulsion Technology,2018,39(10):2171-2176.
[4] 张升升,郑雄,吕雅,等. 国外组合循环动力技术研究进展[J].科技导报,2020,38(12):33-53.
[5] 邹正平,刘火星,唐海龙,等. 高超声速航空发动机强预冷技术研究[J].航空学报,2015,36(8):2544-2562.
[6] 汪元,王振国. 空气预冷发动机及微小通道流动传热研究综述[J].宇航学报,2016,37(1):11-20.
[7] 邓帆,谭慧俊,董昊,等. 预冷组合动力高超声速空天飞机关键技术研究进展[J].推进技术,2018,39(1):1-13.
[8] 朱森元. 氢氧火箭发动机及其低温技术[M].北京:中国宇航出版社,2016.
[9] AZIZ M. Liquid hydrogen:A review on liquefaction,storage,transportation,and safety[J].Energies,2021,14(18):5917.
[10] BALEPIN V. High speed propulsion cycle[EB/OL].https://www.docin.com/p-1179288076.html,2008.
[11] 邹正平,王一帆,额日其太,等. 高超声速强预冷航空发动机技术研究进展[J].航空发动机,2021,47(4):8-21.
[12] 罗佳茂,杨顺华,张建强,等. 甲烷预冷膨胀循环空气涡轮火箭发动机性能分析[J].推进技术,2021,42(9):1964-1975.
[13] BARTH J,TAYLOR N,MULLE G,et al.SABRE technology developmentpathways to flight[C]//Space Propulsion 2018. Seville:Association Aéonautique et Astronautique de France,2018.
[14] FEAST S. The synergetic air-breathing rocket engine(SABRE)development status update[C]//International Astronautical Congress. [S.l.]:IAC,2020.
[15] 张蒙正,南向谊,刘典多. 预冷空气涡轮火箭组合动力系统原理与实现途径[J].火箭推进,2016,42(1):6-12.
ZHANG M Z,NAN X Y,LIU D D. Principles and realizing ways of combined power system for pre-cooling air turbo rocket[J].Journal of Rocket Propulsion,2016,42(1):6-12.
[16] 张蒙正,刘典多,马海波,等. PATR发动机关键技术与性能提升途径初探[J].推进技术,2018,39(9):1921-1927.
[17] XU P C,ZOU Z P,YAO L C. A unified performance conversion method for similar compressors working with different gases based on polytropic analysis and deep-learning improvement[J].Energy Conversion and Management,2021,247:114747.
[18] VARVILL R,BOND A. A comparison of propulsion concepts for SSTO reusable launchers[EB/OL].https://www.semanticscholar.org/paper/A-Comparison-of-Propulsion-Concepts-for-SSTO-Varvill-Bond/47e6c9765bfbc0946 c793e2660c96e53458d2523,2003.
[19] JIVRAJ F,VARVILL R,BOND A,et al.The Scimitar precooled Mach 5 engine[EB/OL].http://www.doc88.com/p-8856973301829.html,2007.
[20] HEMPSELL M,BOND A,BOND R,et al.Progress on the SKYLON and SABRE Development Programme[EB/OL].https://www.researchgate.net/publication/289645719_Progress_on_the_SKYLON_and_SABRE_development_programme,2011.
[21] WEBBER H,BOND A,HEMPSELL M. Sensitivity of pre-cooled air-breathing engine performance to heat exchanger design parameters[C]//57th International Astronautical Congress. Reston,Virigina:AIAA,2006.
[22] ZHANG J Q,WANG Z G,LI Q L. Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J].Acta Astronautica,2017,138:394-406.
[23] DONG P C,TANG H L,CHEN M,et al.Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J].Applied Energy,2018,220:36-46.
[24] YU X F,WANG C,YU D R. Minimization of entropy generation of a closed Brayton cycle based precooling-compression system for advanced hypersonic airbreathing engine[J].Energy Conversion and Management,2020,209:112548.
[25] LI H,LIU H X,ZOU Z P. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine[J].Applied Thermal Engineering,2021,182:116108.
[26] HOOPES K,S?CHEZ. A new method for modelling off-design performance of sCO2 heat exchangers without specifying detailed geometry[EB/OL].https://www.semanticscholar.org/paper/A-NEW-METHOD-FOR-MODELLING-OFF-DESIGN-PERFORMANCE-Hoopes-S%C3%A1 nchez/6383a7543ed545a996d163af3f91e0eebe8cfbdd, 2016.
[27] LI H,ZOU Z P,LIU Y M. A refined design method for precoolers with consideration of multi-parameter variations based on low-dimensional analysis[EB/OL].https://www.sciencedirect.com/science/article/pii/S100093612 100337X?via%3Dihub,2021.
[28] 陈一鸣,邹正平,黄振宇,等. 高超声速强预冷发动机强预冷器试验平台建设及高温性能验证试验[C]//第七届爆震与新型推进学术研讨会论文集. 漳州:中国工程热物理学会,2021.
[29] GasTurb12 design and off-design performance of gas turbines users manual[Z].1990.
[30] 王斌. 非线性方程组的BFS秩2拟Newton方法及其在MATLAB中的实现[J].云南民族大学学报(自然科学版),2009,18(3):213-217.
备注/Memo
收稿日期:2021-06-30 修回日期:2021-08-02
基金项目:国家级重点实验室基金项目(HTKJ2020KL011003)
作者简介:邹正平(1970—),男,博士,教授,研究领域为高超声速预冷发动机技术、涡轮气体动力学。通信作者:杜鹏程(1986—),男,博士,副研究员,研究领域为高超声速预冷发动机技术、叶轮机流动数值模拟。