航天推进技术研究院主办
WANG Yongjia,YAN Yu,JIAO Zhongtian,et al.Analysis on unsteady exhaust process of pulse detonation engine and design method of nozzle[J].Journal of Rocket Propulsion,2021,47(06):93-100.
脉冲爆震发动机非稳态排气及喷管设计分析
- Title:
- Analysis on unsteady exhaust process of pulse detonation engine and design method of nozzle
- 文章编号:
- 1672-9374(2021)06-0093-08
- 分类号:
- V439
- 文献标志码:
- A
- 摘要:
- 为初步得出适用于脉冲爆震发动机的喷管设计准则,基于数值模拟和理论分析方法,对脉冲爆震燃烧非稳态排气过程及适用的喷管设计方法进行了分析。脉冲爆震燃烧的非稳态排气过程可分为4个阶段:爆震波传播阶段、压力速降阶段、压力平台阶段和低压排气阶段。以直管中的C2H4/O2脉冲爆震燃烧为例,排气压力在90.6 p∞~1.72 p∞范围内变化,若采用非稳态喷管设计方法,则可调喷管的扩张比对应为13~1。若采用固定型面喷管,则应当尽可能避免过膨胀状态下的激波损失,喷管设计点参数可使用排气压力平台区燃气参数进行计算,推力系数可达到95%左右。固定型面喷管设计点的气体参数对应最后一道泰勒膨胀波传播至出口时的燃气状态参数,可用经典爆震理论公式推导求解,从而实现脉冲爆震燃烧室固定型面喷管的快速设计。
- Abstract:
- In order to initially derive the nozzle design guidelines for pulse detonation engine,the unsteady exhaust process of pulse detonation combustion and the applicable nozzle design methods were analyzed based on numerical simulation and theoretical analysis methods. The unsteady exhaust process of pulse detonation combustion can be divided into four stages:detonation wave propagation stage,pressure downhill stage,pressure plateau stage and low pressure exhaust stage. Take the pulse detonation combustion of C2H4/O2 in straight tube as an example,the expansion ratio of suitable adjustable nozzle changes from 13 to 1 corresponding to the exhaust pressure range from 90.6 p∞ to 1.72 p∞. For the fixed nozzle scheme,the loss of shock wave triggered by over-expansion should be avoided. The design point of the fixed nozzle can be calculated by making use of the parameters of pressure platform,under which the thrust coefficient up to 0.95. The gas parameters of design point corresponding to the gas state when final Taylor expansion wave travels to the exit,which can be deduced from classical detonation theoretical equation,so as to realize the rapid design of fixed nozzle for the detonation.
参考文献/References:
[1] 严传俊,范玮. 脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社,2005.
[2] 严传俊,范玮. 燃烧学[M].西安:西北工业大学出版社,2005.
[3] FICKETT W,DAVIS W C. Detonation[M].California:University of California Press,1979.
[4] GROSS R A,CHINITZ W. A study of supersonic combustion[J].Journal of the Aerospace Sciences,1960,27(7):517-524.
[5] LEFEBVRE A H. Gas turbine combustion[M].New York:Hemisphere Publishing Corporation,1983.
[6] EIDELMAN S,GROSSMANN W,LOTTATI I. Review of propulsion applications and numerical simulations of the pulsed detonation engine concept[J].Journal of Propulsion and Power,1991,7(6):857-865.
[7] POWERS J M,FROLOV S M. Introduction:perspectives on detonation-based propulsion[J].Journal of Propulsion and Power,2006,22(6):1153-1154.
[8] ADAMSON T C,OLSSON G R. Performance analysis of a rotating detonation wave rocket engine[J].Astronautica Acta,1967,13:405-415.
[9] 李自然,林志勇,韩旭. 超声速斜爆震发动机起爆过程研究综述[J].火箭推进,2013,39(3):1-8.
LI Z R,LIN Z Y,HAN X. Investigation for initiation process of supersonic oblique detonation engine[J].Journal of Rocket Propulsion,2013,39(3):1-8.
[10] 孙亮,白少卿,罗大亮. 脉冲爆震发动机旋转阀技术研究[J].火箭推进,2016,42(4):41-46.
SUN L,BAI S Q,LUO D L. Technology research of rotary valve for pulse detonation engine[J].Journal of Rocket Propulsion,2016,42(4):41-46.
[11] MOHANRAJ R,MERKLE C. A numerical study of pulse detonation engine performance[C]//38th Aerospace Sciences Meeting and Exhibit. Virginia:AIAA,2000.
[12] YUNGSTER S. Analysis of nozzle and ejector effects on pulse detonation engine performance[C]//41st Aerospace Sciences Meeting and Exhibit. Reston,Virigina:AIAA,2003.
[13] MORRIS C. Simplified analysis of pulse detonation rocket engine blowdown gasdynamics and performance[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2002.
[14] COOPER M,SHEPHERD J. The effect of nozzles and extensions on detonation tube performance[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2002.
[15] BROPHY C,DAUSEN D,SMITH L,et al.Fluidic nozzles for pulse detonation combustors[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston,Virigina:AIAA,2012.
[16] ZHANG Q,FAN W,WANG K,et al.Experimental study on the performance of a pulse detonation rocket engine with injected flows[C]//11th Asia-Pacific Conference on Combustion. Sydney:The University of Sydney,2017.
[17] CONAIRE M ,CURRAN H J,SIMMIE J M,et al.A comprehensive modelling study of hydrogen oxidation[J].International Journal of Chemical Kinetics,2004,36(11):603-622.
[18] KAILASANATH K,LI C,CHEATHAM S,et al.Detonation engine research at NRL[C]//2011 International Workshop on Detonation for Propulsion. Busan,Korea:[s.n.],2011.
[19] COOPER M,JACKSON S,AUSTIN J,et al.Direct experimental impulse measurements for detonations and deflagrations[J].Journal of Propulsion and Power,2002,18(5):1033-1041.
[20] BARBOUR E A,HANSON R K. Analytic model for single-cycle detonation tube with diverging nozzles[J].Journal of Propulsion and Power,2009,25(1):162-172.
备注/Memo
收稿日期:2021-02-20 修回日期:2021-03-11
基金项目:国家自然科学基金(51176158 91441201 51376151) 教育部博士点基金(20126102110029) 西北工业大学博士论文创新基金(CX201504)
作者简介:王永佳(1991—),男,博士,高级工程师,研究领域为液体火箭发动机、爆震发动机和雾化燃烧。